Skip to main content
Log in

Isolation of a novel gene encoding a 3,5,6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

3,5,6-trichloro-2-pyridinol (TCP) is a major metabolite of the insecticide chlorpyrifos and is hazardous to human and animal health. A gene encoding a TCP degrading enzyme was cloned from a metagenomic library prepared from cow rumen. The gene (tcp3A) is 2.5 kb in length, encoding a protein (Tcp3A) of 599 amino acid residues. Tcp3A has a potential signal sequence, as well as a putative ATP/GTP binding site, and a likely amidation site. The molecular weight of the enzyme is 62 kDa by SDS–PAGE. Comparison of Tcp3A with the NCBI database using BLASTP revealed homology to amidohydrolase proteins. Recombinant Escherichia coli harboring the tcp3A gene could utilize TCP as the sole source of carbon. TLC and HPLC revealed that TCP was degraded by recombinant E. coli harboring tcp3A. This is the first report of a gene encoding a TCP degrading enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405

    Article  CAS  PubMed  Google Scholar 

  • Armbrust KL (2001) Chlorothalonil and chlorpyrifos degradation products in golf course leachate. Pest Manag Sci 57:797–802

    Article  CAS  PubMed  Google Scholar 

  • Bakiamoh SB, Maimait R, McGowin AE (1999) Supercritical fluid extraction of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol from garden compost. J Chromatogr A 862:105–112

    Article  CAS  PubMed  Google Scholar 

  • Barron MG, Plakas SM, Wiliga PC (1991) Chlorpyrifos pharmacokinetics and metabolism following intravascular and dietary administration in channel catfish. Toxicol Appl Pharmacol 108:474–482

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Bodden RM, Puhl RJ, Bauriedel WR (1989) Absorption, distribution, and metabolism of [14C]chlorpyrifos applied dermally to goats. J Agric Food Chem 37:1018–1111

    Article  Google Scholar 

  • Cho SJ, Yun HD (2005) Cloning of a-amylase gene from unculturable bacterium using cow rumen metagenome. J Life Sci 15:1013–1021

    Google Scholar 

  • Cho KM, Math RK, Islam SMA, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57:1882–1889

    Article  CAS  Google Scholar 

  • Cook AM, Daughton CG, Alexander M (1980) Desulfuration of dialkyl thiophosphoric acids by a pseudomonad. Appl Environ Microbiol 39:463–465

    CAS  PubMed  Google Scholar 

  • Davis DE (1977) Occupational and environmental pesticide exposure study in South Florida. US Environmental Protection Agency Report No. EPA-600/1–77–019

  • Devaiah KM, Islam SMA, Cho KM, Math RK, Lee YH, Kim H, Yun HD (2009) Expression of esterase gene in yeast for organophosphates biodegradation. Pestic Biochem Physiol 94:15–20

    Article  Google Scholar 

  • Dishberger HJ, McKellar RL, Pennington JY, Rice JR (1977) Determination of residues of chlorpyrifos, its oxygen analogue, and 3, 5, 6-trichloro-2-pyridinol in tissues of cattle fed chlorpyrifos. J Agric Food Chem 25:1325–1329

    Article  Google Scholar 

  • Feng Y, Racke KD, Bollag JM (1997) Isolation and characterization of a chlorinated pyridinol degrading bacterium. Appl Environ Microbiol 63:4096–4098

    CAS  PubMed  Google Scholar 

  • Fu G, Cui Z, Huang T, Li S (2004) Expression, purification, and characterization of novel methyl parathion hydrolase. Protein Express Purif 36:170–176

    Article  CAS  Google Scholar 

  • Goswami S, Singh DK (2009) Biodegradation of α- and β-endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9. Biodegradation 20:199–207

    Article  CAS  PubMed  Google Scholar 

  • Hassal AK (1990) The biochemistry and uses of pesticides. Structure, metabolism and mode of action, 2nd edn. ELBS Publication, Weiheim

    Google Scholar 

  • Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of α- and β-endosulfan by soil bacteria. Biodegradation 18:731–740

    Article  CAS  PubMed  Google Scholar 

  • Ivey MC (1979) Chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol: residues in the body tissues of cattle wearing chlorpyrifos-impregnated plastic ear tags. J Econ Entomol 72:909–911

    CAS  PubMed  Google Scholar 

  • Ivey MC, Palmer JS (1979) Chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol: residues in body tissues of swine treated with Chlorpyrifos for hog louse and itch mite control. J Econ Entomol 72:837–838

    CAS  PubMed  Google Scholar 

  • Karpouzas DG, Walker A (2000) Factors influencing the ability of Pseudomonas putida strains epI and II to degrade the organophosphate ethoprophos. J Appl Microbiol 89:40–48

    Article  CAS  PubMed  Google Scholar 

  • Kim JR, Ahn YJ (2009) Identification and characterization of chlorpyrifos-methyl and 3, 5, 6-trichloro-2-pyridinol degrading Burkholderia sp. strain KR100. Biodegradation 20:487–497

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang JJ, Wang SJ, Zhang ZE, Zhou NY (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. Strain WBC-3. Biochem Bioph Res Co 334:1107–1114

    Article  CAS  Google Scholar 

  • Manclús JJ, Montoya A (1995) Development of immunoassays for the analysis of chlorpyrifos and its major metabolite 3, 5, 6-trichloro-2-pyridinol in the aquatic environment. Anal Chim Acta 311:341–348

    Article  Google Scholar 

  • Marshall WK, Roberts JR (1978) Ecotoxicology of chlorpyrifos. National Research Council of Canada, Publication No. NRCC 16079

  • Mauriz E, Calle A, Manclús JJ, Montoya A, Lechuga LM (2007) On-line determination of 3, 5, 6-trichloro-2-pyridinol in human urine samples by surface plasmon resonance immunosensing. Anal Bioanal Chem 387:2757–2765

    Article  CAS  PubMed  Google Scholar 

  • McKellar RL, Dishburger HJ, Rice JR, Craig LF, Pennington J (1976) Residues of chlorpyrifos, its oxygen analogue, and 3, 5, 6-trichloro-2-pyridinol in milk and cream from cows fed chlorpyrifos. J Agric Food Chem 24:283–286

    Article  CAS  PubMed  Google Scholar 

  • Nolan RJ, Rick DL, Freshour NL, Saunders JH (1984) Chlorpyrifos: pharmacokinetics in human volunteers. Toxicol Appl Pharmacol 73:8–15

    Article  CAS  PubMed  Google Scholar 

  • Racke KD (1993) Environmental fate of chlorpyrifos. Rev Environ Contam Toxicol 131:1–154

    CAS  PubMed  Google Scholar 

  • Racke KD, Coats JR, Titus KR (1990) Degradation of chlorpyrifos and its hydrolysis product, 3, 5, 6-trichloro-2-pyridinol, in soil. J Environ Sci Health B 23:527–539

    Article  Google Scholar 

  • Raina V, Suar M, Singh A, Prakash O, Dadhwal M, Gupta SK, Dogra C, Lawlor K, Lal S, Meer JRVD, Holliger C, Lal R (2008) Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation 19:27–40

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Seghers D, Wittebolle L, Top EM

    Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  CAS  PubMed  Google Scholar 

  • Selinger LB, Forsberg CW, Cheng KJ (1996) The rumen: a unique source of enzymes for enhancing live stock production. Anaerobe 2:263–284

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206

    Article  CAS  PubMed  Google Scholar 

  • Streit WR, Daniel R, Jaeger KE (2004) Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Curr Opin Biotechnol 15:285–290

    Article  CAS  PubMed  Google Scholar 

  • Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64:3368–3375

    CAS  PubMed  Google Scholar 

  • Xu G, Zheng W, Li Y, Wang S, Zhangc J, Yand Y (2008) Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeter Biodegr 62:51–56

    Article  CAS  Google Scholar 

  • Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yang C, Jiang H, Qiao C (2008) Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Biodegradation 19:831–839

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, Hong HS, Zhou JL, Yu G (2002) Occurrence and behavior of organophosphorus insecticides in the River Wuchuan, southeast China. J Environ Monit 4:498–504

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hong Q, Xu J, Zhang X, Li S (2006) Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation 17:275–283

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant No. R01-2008-000-20220-0 from the Basic Research Program of KOSEF, Korea. Renukaradhya K. Math and Shah Md. Asraful Islam are supported by scholarships from the BK21 Program, Ministry of Education & Human Resources Development, Korea. We are very much thankful to BioScience Writers, LCC, 8418 Bluegate St. 713-664-4597, Houston, TX 77025 for the correction of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Dae Yun.

Additional information

Renukaradhya K. Math, and Shah Md. Asraful Islam contributed equally in this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Math, R.K., Asraful Islam, S.M., Cho, K.M. et al. Isolation of a novel gene encoding a 3,5,6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library. Biodegradation 21, 565–573 (2010). https://doi.org/10.1007/s10532-009-9324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9324-5

Keywords

Navigation