Skip to main content
Log in

Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The combined effect of phenanthrene and Cr(VI) on soil microbial activity, community composition and on the efficiency of bioremediation processes has been studied. Biometer flask systems and soil microcosm systems contaminated with 2,000 mg of phenanthrene per kg of dry soil and different Cr(VI) concentrations were investigated. Temperature, soil moisture and oxygen availability were controlled to support bioremediation. Cr(VI) inhibited the phenanthrene mineralization (CO2 production) and cultivable PAH degrading bacteria at levels of 500–2,600 mg kg−1. In the bioremediation experiments in soil microcosms the degradation of phenanthrene, the dehydrogenase activity and the increase in PAH degrading bacteria counts were retarded by the presence of Cr(VI) at all studied concentrations (25, 50 and 100 mg kg−1). These negative effects did not show a correlation with Cr(VI) concentration. Whereas the presence of Cr(VI) had a negative effect on the phenanthrene elimination rate, co-contamination with phenanthrene reduced the residual Cr(VI) concentration in the water exchangeable Cr(VI) fraction (WEF) in comparison with the soil microcosm contaminated only with Cr(VI). Clear differences were found between the denaturing gradient gel electrophoresis (DGGE) patterns of each soil microcosm, showing that the presence of different Cr(VI) concentrations did modulate the community response to phenanthrene and caused perdurable changes in the structure of the microbial soil community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amezcua-Allieri MA, Lead JR, Rodríguez-Vazquez R (2005) Impact of microbial activity on copper, lead and nickel mobilization during the bioremediation of soil PAHs. Chemosphere 61:484–491. doi:10.1016/j.chemosphere.2005.03.002

    Article  PubMed  CAS  Google Scholar 

  • Bader JL, Gonzalez G, Goodell PC, Ali AS, Pillai SD (1999) Chromium-resistant bacterial populations from a site heavily contaminated with hexavalent chromium. Water Air Soil Pollut 109:263–276. doi:10.1023/A:1005075800292

    Article  CAS  Google Scholar 

  • Bartha R, Pramer D (1965) Features of a flask and method for measuring the persistence and biological effects of pesticide in soil. Soil Sci 100:68–70. doi:10.1097/00010694-196507000-00011

    Article  CAS  Google Scholar 

  • Castle DM, Montgomery MT, Kirchman DL (2006) Effects of naphthalene on microbial community composition in the Delaware estuary. FEMS Microbiol Ecol 56:55–63

    Article  PubMed  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, and Water Environmental Federation, Washington, DC

    Google Scholar 

  • Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Lavelle P (2004) Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu, and Cd-contaminated soils. Appl Soil Ecol 25:99–109. doi:10.1016/j.apsoil.2003.09.003

    Article  Google Scholar 

  • Déziél E, Paquette G, Villemur R, Lepine F, Bisaillon J (1996) Biosurfactant production by soil Pseudomonas strain growing on polycyclic aromatic hydrocarbon. Appl Environ Microbiol 62:1908–1912

    PubMed  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275. doi:10.1016/j.mib.2005.04.011

    Article  PubMed  CAS  Google Scholar 

  • Gentry TJ, Wolf DC, Reynolds CM, Fuhrmann JJ (2003) Pyrene and phenanthrene influence on soil microbial populations. Biorem J 7:53–68

    Article  CAS  Google Scholar 

  • Han FX, Su Y, Maruthi Sridhar BB, Monts DI (2004) Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant Soil 265:243–252. doi:10.1007/s11104-005-0975-7

    Article  CAS  Google Scholar 

  • Johnsen AR, Bendixen K, Karlson U (2002) Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689. doi:10.1128/AEM.68.6.2683-2689.2002

    Article  PubMed  CAS  Google Scholar 

  • Kamaludeen SPB, Megharaj M, Juhasz AL, Sethunathan N, Naidu R (2003) Chromium-microorganism interactions in soils: remediation implications. Rev Environ Contam Toxicol 178:93–164. doi:10.1007/0-387-21728-2_4

    Article  PubMed  CAS  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46. doi:10.1080/10643389991259164

    Article  CAS  Google Scholar 

  • Krishna KR, Philip L (2005) Bioremediation of Cr(VI) in contaminated soils. J Hazard Mater B121:109–117. doi:10.1016/j.jhazmat.2005.01.018

    Article  CAS  Google Scholar 

  • Kouretev PS, Nakats CH, Konopka A (2006) Responses of the anaerobic bacterial community to addition of organic C in chromium(VI)- and iron(III)-amended microcosms. Appl Environ Microbiol 72:628–637. doi:10.1128/AEM.72.1.628-637.2006

    Article  CAS  Google Scholar 

  • Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621

    PubMed  CAS  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B (2003) Habitual function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ Int 28:719–728. doi:10.1016/S0160-4120(02)00117-4

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U, Santegoedes C, Schäfer H, Wawer C (1998) Denaturing gradient electrophoresis (DGGE) in microbial ecology. In: Akkermanns ADL, van Elsas JD, de Brujin F (eds) Molecular microbial ecology manual. Kluwer Academic Press, Dordrecht, pp 1–27

    Google Scholar 

  • Nakatsu CH, Carmosini N, Baldwin B, Beasley F, Kourtev P, Konopka A (2005) Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb an Cr). Appl Environ Microbiol 71:7679–7689. doi:10.1128/AEM.71.12.7679-7689.2005

    Article  PubMed  CAS  Google Scholar 

  • Rajapaksha RMCP, Tobor-Kaplon MA, Baath E (2004) Metal toxicity affects fungal and bacterial activites in soil differently. Appl Environ Microbiol 70:2966–2973. doi:10.1128/AEM.70.5.2966-2973.2004

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen LD, Sørensen SJ (2001) Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiol Ecol 36:1–9. doi:10.1111/j.1574-6941.2001.tb00820.x

    Article  PubMed  CAS  Google Scholar 

  • Reasoner D, Geldreich E (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    PubMed  CAS  Google Scholar 

  • Said WA, Lewis DL (1991) Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl Environ Microbiol 57:1498–1503

    PubMed  CAS  Google Scholar 

  • Shi W, Becker J, Bischoff M, Turco RF, Konopka AE (2002) Association of microbial community composition and activity with lead, chromium and hydrocarbon contamination. Appl Environ Microbiol 68:3859–3866. doi:10.1128/AEM.68.8.3859-3866.2002

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  • Sokhn J, De Leij FAAM, Hart TD, Lynch JM (2001) Effect of copper on the degradation of phenanthrene by soil micro-organisms. Lett Appl Microbiol 33:164–168. doi:10.1046/j.1472-765x.2001.00972.x

    Article  PubMed  CAS  Google Scholar 

  • Song HG, Wang X, Bartha R (1990) Bioremediation potential of terrestrial fuel spills. Appl Environ Microbiol 56:652–656

    PubMed  CAS  Google Scholar 

  • Thalman A (1968) Zur Methodik der bestimmung der dehydrogenaseaktivität im boden mittels triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–258

    Google Scholar 

  • Tokunaga TK, Wan J, Firestone MK, Hazen TC, Olson KR, Herman DJ et al (2003) Bioremediation and biodegradation. In situ reduction of Chromium(VI) in heavily contaminated soils through organic carbon amendment. J Environ Qual 32:1641–1649

    Article  PubMed  CAS  Google Scholar 

  • Vecchioli G, Constanza O, Giorgieri S, Remmler M (1997) Extend of cleaning achievable for bioremediation of soil contaminated with petrochemical sludges. J Chem Technol Biotechnol 70:331–336. doi:10.1002/(SICI)1097-4660(199712)70:4<331::AID-JCTB788>3.0.CO;2-W

    Article  CAS  Google Scholar 

  • Viñas M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:7008–7018. doi:10.1128/AEM.71.11.7008-7018.2005

    Article  PubMed  CAS  Google Scholar 

  • Viti C, Giovannetti L (2005) Characterization of cultivable heterotrophic bacterial communities in Cr-polluted and unpolluted soils using Biolog and ARDRA approaches. Appl Soil Ecol 28:101–112. doi:10.1016/j.apsoil.2004.07.008

    Article  Google Scholar 

  • Viti C, Mini A, Ranalli G, Lustrato G, Giovannetti L (2006) Response of microbial communities to different doses of chromate in soil microcosms. Appl Soil Ecol 34:125–139. doi:10.1016/j.apsoil.2006.03.003

    Article  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    Article  PubMed  CAS  Google Scholar 

  • Wittbrodt PR, Palmer CD (1996) Reduction of Cr(VI) in the presence of excess soil fulivic acid. Environ Sci Technol 30:2470–2477. doi:10.1021/es950731c

    Article  CAS  Google Scholar 

  • Wong KW, Toh BA, Ting YP, Obbard JP (2005) Biodegradation of phenanthrene by the indigenous microbial biomass in a zinc amended soil. Appl Microbiol 40:50

    CAS  Google Scholar 

  • Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon-degrading bacteria by a most probable number procedure. Can J Microbiol 42:252–258

    Article  PubMed  CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156. doi:10.1023/A:1022504826342

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially support by the Agencia Nacional de Promoción Científica y Tecnológica (PICT2004-25300). Ibarrolaza A. and Coppotelli B. are doctoral fellowships of CONICET (Argentine Research Council). Donati E. is research member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Ibarrolaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibarrolaza, A., Coppotelli, B.M., Del Panno, M.T. et al. Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms. Biodegradation 20, 95–107 (2009). https://doi.org/10.1007/s10532-008-9203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9203-5

Keywords

Navigation