Skip to main content

Advertisement

Log in

Experimental evaluation of vinegar (acetic acid) for control of invasive corals (Tubastraea spp.) and a review of knowledge for other aquatic pests

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Vinegar/acetic acid (V/AA) has been used to control unwanted marine and freshwater species. As a naturally occurring, available and ubiquitous substance most countries’ legislations do not consider V/AA as harmful to the environment. We investigated the toxicity of household vinegar for the invasive corals Tubastraea coccinea and T. tagusensis (Dendrophylliidae), using injection (1, 2 or 4 of 10, 20 or 40 ml of vinegar) and immersion (full and half concentration; periods of 15, 30, 45, 60 or 120 min) treatments. For Tubastraea spp., immersion treatment always resulted in the death of the corals. In contrast, the lethality of injected vinegar depended on the number and volume of injections per coral colony; partially damaged colonies may be able to recover after vinegar injection. We also carried out a critical review and analysis regarding the use of V/AA in other aquatic species. V/AA has been tested and used as a biocide from virus and bacteria to fish; as for Tubastraea spp., three quarters of studies investigated the positive effects of V/AA as a biocide, the rest negative collateral effects on non-target species. We conclude that V/AA is an effective agent for killing Tubastraea spp. and most other aquatic organisms, can be applied using different methods and in different environments for controlling: (1) invasive or outbreak species; and (2) biofouling by native or invasive species on aquaculture systems and vectors. V/AA may be used applied pre-border to shipping vectors potentially transporting non-indigenous marine biofouling species such as Tubastraea spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altvater L, de Messano LV, Andrade M, Apolinário M, Coutinho R (2017) Use of sodium hypochlorite as a control method for the non-indigenous coral species Tubastraea coccinea Lesson, 1829. Manag Biol Invasions 8:197–204

    Article  Google Scholar 

  • Anderson LW (2005) California’s reaction to Caulerpa taxifolia: a model for invasive species rapid response. Biol Invasions 7:1003–1016

    Article  Google Scholar 

  • Anderson LW (2007) Potential for sediment-applied acetic acid for control of invasive Spartina alterniflora. J Aquat Plant Manag 45:100–105

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Atalah J, Brook R, Cahill P, Fletcher LM, Hopkins AG (2016) It’s a wrap: encapsulation as a management tool for marine biofouling. Biofouling 32:277–286. https://doi.org/10.1080/08927014.2015.1137288

    Article  CAS  PubMed  Google Scholar 

  • Ayre DJ, Resing JM (1986) Sexual and assexual production of planulae in reef corals. Mar Biol 90:187–190

    Article  Google Scholar 

  • Bax N, Hayes K, Marshall A, Parry D, Thresher R (2002) Man-made marinas as sheltered islands for alien marine organisms: establishment and eradication of an alien invasive marine species. In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist Group; IUCN [World Conservation Union], Gland; Cambridge, pp 26–39

    Google Scholar 

  • Boström-Einarsson L, Rivera-Posada J (2016) Controlling outbreaks of the coral-eating crown-of-thorns starfish using a single injection of common household vinegar. Coral Reefs 35:223–228

    Article  Google Scholar 

  • Brito A et al (2017) Colonización y expansión en Canarias de dos corales potencialmente invasores introducidos por las plataformas petrolíferas. Vieraea 45:65–82

    Google Scholar 

  • Caffrey JM, Millane M, Evers S, Moron H, Butler M (2010) A novel approach to aquatic weed control and habitat restoration using biodegradable jute matting. Aquat Invasions 5:123–129

    Article  Google Scholar 

  • Cairns SD (1994) Scleractinia of the temperate north Pacific. Smithson Contrib Zool 557:1–150

    Google Scholar 

  • Cairns SD (2000) A revision of the shallow-water azooxanthellate Scleractinia of the Western Atlantic. Stud Nat Hist Caribb Reg 75:1–240

    Google Scholar 

  • Capel KCC, Migotto AE, Zilberberg C, Kitahara MV (2014) Another tool towards invasion? Polyp “bail-out” in Tubastraea coccínea. Coral Reefs 33:1165. https://doi.org/10.1007/s00338-014-1200-z

    Article  Google Scholar 

  • Capel KCC, Toonen RJ, Rachid CTCC, Creed JC, Kitahara MV, Forsman Z, Zilberberg C (2017) Clone wars: asexual reproduction dominates in the invasive range of Tubastraea spp. (Anthozoa: Scleractinia) in the South-Atlantic Ocean. PeerJ 5:e3873. https://doi.org/10.7717/peerj.3873

    Article  PubMed  PubMed Central  Google Scholar 

  • Carver C, Chisholm A, Mallet A (2003) Strategies to mitigate the impact of Ciona intestinalis (L.) biofouling on shellfish production. J Shellfish Res 22:621–631

    Google Scholar 

  • Creed JC (2006) Two invasive alien azooxanthellate corals, Tubastraea coccinea and Tubastraea tagusensis, dominate the native zooxanthellate Mussismilia hispida in Brazil. Coral Reefs 25:350

    Article  Google Scholar 

  • Creed JC et al (2017a) The invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world: history, pathways and vectors. Biol Invasions 19:283–305

    Article  Google Scholar 

  • Creed JC, Junqueira AOR, Fleury BG, Mantelatto MC, Oigman-Pszczol SS (2017b) The Sun-Coral Project: the first social-environmental initiative to manage the biological invasion of Tubastraea spp. in Brazil. Manag Biol Invasions 8:181–195

    Article  Google Scholar 

  • Culver CS, Kuris AM (2000) The apparent eradication of a locally established introduced marine pest. Biol Invasions 2:245–253

    Article  Google Scholar 

  • Davis EA, Wong WH, Harman WN (2015) Distilled white vinegar (5% acetic acid) as a potential decontamination method for adult zebra mussels. Manag Biol Invasions 6:423–428

    Article  Google Scholar 

  • De Paula AF, Creed JC (2005) Spatial distribution and abundance of nonindigenous coral genus Tubastraea (Cnidaria, Scleractinia) around Ilha Grande, Brazil. Braz J Biol 65:661–673

    Article  CAS  PubMed  Google Scholar 

  • De Paula AF, Fleury BG, Lages BG, Creed JC (2017) Experimental evaluation of the effects of management of invasive corals on native communities. Mar Ecol Prog Ser 572:141–154

    Article  Google Scholar 

  • Denny C (2008) Development of a method to reduce the spread of the ascidian Didemnum vexillum with aquaculture transfers. ICES J Mar Sci 65:805–810

    Article  Google Scholar 

  • Dvorak G (2017) Disinfection 101. The Center for Food Security and Public Health [Online] Available from: http://www.cfsph.iastate.edu/Disinfection/Assets/Disinfection101.pdf. Accessed 18 May 2017

  • Fenner D, Banks K (2004) Orange cup coral Tubastraea coccinea invades Florida and the Flower Garden Banks, northwestern Gulf of Mexico. Coral Reefs 23:505–507

    Google Scholar 

  • Forrest B (2007) Managing risks from invasive marine species: Is post-border management feasible? Thesis, Victoria University

  • Forrest B, Hopkins G, Dodgshun T, Gardner J (2007) Efficacy of acetic acid treatments in the management of marine biofouling. Aquaculture 262:319–332

    Article  CAS  Google Scholar 

  • Glasby TM, Gibson PT, Kay S (2005) Tolerance of the invasive marine alga Caulerpa taxifolia to burial by sediment. Aquat Bot 82:71–81

    Article  Google Scholar 

  • Gomes AN, Barros GM, Pompei C (2015) Monitoramento extensivo e manejo do coral-sol Tubastraea spp. (Cnidaria, Anthozoa) na Estação Ecológica de Tamoios, RJ, Brasil. In: VIII Congresso Brasileiro de Unidades de Conservação, Curitiba, 2015. Anais do VIII CBUC, pp 1–7

  • Hennessey SM, Sammarco PW (2014) Competition for space in two invasive Indo-Pacific corals—Tubastraea micranthus and Tubastraea coccinea: laboratory experimentation. J Exp Mar Biol Ecol 459:144–150

    Article  Google Scholar 

  • Hewitt CL, Campbell ML, McEnnulty F, Moore KM, Murfet NB, Robertson B, Schaffelke B (2005) Efficacy of physical removal of a marine pest: the introduced kelp Undaria pinnatifida in a Tasmanian marine reserve. Biol Invasions 7:251–263

    Article  Google Scholar 

  • Hewitt CL, Everett RA, Parker N, Campbell ML (2009) Marine bioinvasion management: structural framework. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 327–334

    Chapter  Google Scholar 

  • Hillock KA, Costello MJ (2013) Tolerance of the invasive tunicate Styela clava to air exposure. Biofouling 29:1181–1187. https://doi.org/10.1080/08927014.2013.832221

    Article  PubMed  Google Scholar 

  • Hodgson G, Carpenter JE (1995) Scleratinian corals of Kuwait. Pac Sci 49:227–246

    Google Scholar 

  • Hopkins GA, Forrest BM, Jiang W, Gardner JPA (2011) Successful eradication of a non-indigenous marine bivalve from a subtidal soft-sediment environment. J Appl Ecol 48:424–431

    Article  Google Scholar 

  • Kilroy C, Lagerstedt A, Davey A, Robinson K (2006) Studies on the survivability of the invasive diatom Didymosphenia geminata under a range of environmental and chemical conditions. Report by National Institute of Water and Atmospheric Research, New Zealand

  • Lages BG, Fleury BG, Pinto AC, Creed JC (2010) Chemical defenses against generalist fish predators and fouling organisms in two invasive ahermatypic corals in the genus Tubastraea. Mar Ecol 31:473–482. https://doi.org/10.1111/j.1439-0485.2010.00376.x

    Article  Google Scholar 

  • Lages BG, Fleury BG, Menegola C, Creed JC (2011) Change in tropical rocky shore communities due to an alien coral invasion. Mar Ecol Prog Ser 438:85–96. https://doi.org/10.3354/meps09290

    Article  Google Scholar 

  • Lages B, Fleury B, Hovell AC, Rezende C, Pinto A, Creed J (2012) Proximity to competitors changes secondary metabolites of non-indigenous cup corals, Tubastraea spp., in the southwest Atlantic. Mar Biol 159:1551–1559. https://doi.org/10.1007/s00227-012-1941-6

    Article  CAS  Google Scholar 

  • LeBlanc N, Davidson J, Tremblay R, McNiven M, Landry T (2007) The effect of anti-fouling treatments for the clubbed tunicate on the blue mussel, Mytilus edulis. Aquaculture 264:205–213

    Article  CAS  Google Scholar 

  • Lewis JA, Dimas J (2007) Treatment of biofouling in internal seawater systems-phase 2. Maritime Platforms Division, DSTO Defence Science and Technology Organisation, Victoria

    Google Scholar 

  • Locke A, Doe KG, Fairchild WL, Jackman PM, Reese EJ (2009) Preliminary evaluation of effects of invasive tunicate management with acetic acid and calcium hydroxide on non-target marine organisms in Prince Edward Island, Canada. Aquat Invasions 4:221–236

    Article  Google Scholar 

  • Luz BLP, Capel KCC, Zilberberg C, Flores AAV, Migotto AE, Kitahara MV (2018) A polyp from nothing: the extreme regeneration capacity of the Atlantic invasive sun corals Tubastraea coccinea and T. tagusensis (Anthozoa, Scleractinia). J Exp Mar Biol Ecol 503:60–65

    Article  Google Scholar 

  • Mantelatto MC, Creed JC (2015) Non-indigenous sun corals invade mussel beds in Brazil. Mar Biodivers 45:605–606

    Article  Google Scholar 

  • Mantelatto M, Creed J, Mourão G, Migotto A, Lindner A (2011) Range expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis in the Southwest Atlantic. Coral Reefs 30:397

    Article  Google Scholar 

  • Mantelatto MC, Pires LM, de Oliveira GJG, Creed JC (2015) A test of the efficacy of wrapping to manage the invasive corals Tubastraea tagusensis and T. coccinea. Manag Biol Invasions 6:367–374

    Article  Google Scholar 

  • Mayer F (1977) Aquatic toxicology and hazard evaluation, vol 634. ASTM International, West Conshohocken

    Book  Google Scholar 

  • McCann LD, Holzer KK, Davidson IC, Ashton GV, Chapman MD, Ruiz GM (2013) Promoting invasive species control and eradication in the sea: options for managing the tunicate invader Didemnum vexillum in Sitka, Alaska. Mar Pollut Bull 77:165–171

    Article  CAS  PubMed  Google Scholar 

  • Miranda RJ, Costa Y, Lorders FL, José de Anchieta C, Barros F (2016) New records of the alien cup-corals (Tubastraea spp.) within estuarine and reef systems in Todos os Santos Bay, Southwestern Atlantic. Mar Biodivers Rec 9:1

    Article  Google Scholar 

  • Moreira PL, Ribeiro FV, Creed JC (2014) Control of invasive marine invertebrates: an experimental evaluation of the use of low salinity for managing pest corals (Tubastraea spp.). Biofouling 30:639–650. https://doi.org/10.1080/08927014.2014.906583

    Article  CAS  PubMed  Google Scholar 

  • Morrisey DJ (2015) Addition of biocide during vessel biofouling treatment—an assessment of environmental effects. vol No. 2715. Cawthron Report Prepared for Nelson City Council

  • Moutardier G et al (2015) Lime juice and vinegar injections as a cheap and natural alternative to control COTS outbreaks. PLoS ONE 10:e0137605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paetzold SC, Davidson J, Giberson D (2008) Responses of Mitrella lunata and Caprella spp., potential tunicate micropredators, in Prince Edward Island estuaries to acetic acid anti-fouling treatments. Aquaculture 285:96–101

    Article  Google Scholar 

  • Pannell A, Coutts ADM (2007) Treatment methods used to manage Didemnum vexillum in New Zealand. New Zealand Marine Farming Association

  • Parent M, Paetzold SC, Quijon PA, Davidson J (2011) Perforation with and without vinegar injection as a mitigation strategy against two invasive tunicates, Ciona intestinalis and Styela clava. Manag Biol Invasions 2:27–38

    Article  Google Scholar 

  • Piola RF, Dafforn KA, Johnston EL (2009) The influence of antifouling practices on marine invasions. Biofouling 25:633–644

    Article  CAS  PubMed  Google Scholar 

  • Piola RF, Dunmore RA, Forrest BM (2010) Assessing the efficacy of spray delivered ‘ecofriendly’ chemicals for the control and eradication of marine fouling pests. Biofouling 26:187–203

    Article  CAS  PubMed  Google Scholar 

  • Platt JR (2016) The starfish assassin. Sci Am 314:16. https://doi.org/10.1038/scientificamerican0116-1016

    Article  PubMed  Google Scholar 

  • Precht WF, Hickerson EL, Schmahl GP, Aronson RB (2014) The invasive coral Tubastraea coccinea (Lesson, 1829): implications for natural habitats in the Gulf of Mexico and the Florida Keys. Gulf Mex Sci 32:55–59

    Google Scholar 

  • Reeburgh WS (1983) Rates of biogeochemical processes in anoxic sediments. Annu Rev Earth Planet Sci 11:269–298. https://doi.org/10.1146/annurev.ea.11.050183.001413

    Article  CAS  Google Scholar 

  • Rolheiser K, Dunham A, Switzer S, Pearce C, Therriault T (2012) Assessment of chemical treatments for controlling Didemnum vexillum, other biofouling, and predatory sea stars in Pacific oyster aquaculture. Aquaculture 364:53–60

    Article  CAS  Google Scholar 

  • Sammarco PW, Porter SA, Cairns SD (2010) A new coral species introduced into the Atlantic Ocean-Tubastraea micranthus (Ehrenberg, 1834) (Cnidaria, Anthozoa, Scleractinia): an invasive threat. Aquat Invasions 5:131–140

    Article  Google Scholar 

  • Santos LAH, Ribeiro FV, Creed JC (2013) Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. J Exp Mar Biol Ecol 449:69–76. https://doi.org/10.1016/j.jembe.2013.08.017

    Article  Google Scholar 

  • Sharp GJ, MacNair N, Campbell E, Butters A, Ramsay A, Semple R (2006) Fouling of mussel (Mytilus edulis) collectors by algal mats, dynamics, impacts and symptomatic treatment in PEI Canada. Sci Asia 32:87–97

    Article  Google Scholar 

  • Simberloff D (2003) How much information on population biology is needed to manage introduced species? Conserv Biol 17:83–92

    Article  Google Scholar 

  • Spencer DF, Ksander GG (1995a) Differential effects of the microbial metabolite, acetic acid, on sprouting of aquatic plant propagules. Aquat Bot 52:107–119

    Article  CAS  Google Scholar 

  • Spencer DF, Ksander GG (1995b) Influence of acetic acid on regrowth of dioecious hydrilla from root crowns. J Aquat Plant Manag 33:61–63

    Google Scholar 

  • Spencer DF, Ksander GG (1997) Dilute acetic acid exposure enhances electrolyte leakage by Hydrilla verticillata and Potamogeton pectinatus tubers. J Aquat Plant Manag 35:25–30

    Google Scholar 

  • Spencer DF, Ksander GG (1999) Influence of dilute acetic acid treatments on survival of monoecious hydrilla tubers in the Oregon House Canal, California. J Aquat Plant Manag 37:67–71

    Google Scholar 

  • Thibaut T, Meinesz A (2000) Are the Mediterranean ascoglossan molluscs Oxynoe olivacea and Lobiger serradifalci suitable agents for a biological control against the invading tropical alga Caulerpa taxifolia? Life Sci 323:477–488

    CAS  Google Scholar 

  • Vinagre C, Silva R, Mendonça V, Flores AA, Baeta A, Marques JC (2018) Food web organization following the invasion of habitat-modifying Tubastraea spp. corals appears to favour the invasive borer bivalve Leiosolenus aristatus. Ecol Indic 85:1204–1209

    Article  Google Scholar 

  • Wells JW (1982) Notes on Indo-Pacific scleractinian corals. Part 9. New corals from the Galápagos Islands. Pac Sci 36:211–219

    Google Scholar 

  • Williams SL, Schroeder SL (2004) Eradication of the invasive seaweed Caulerpa taxifolia by chlorine bleach. Mar Ecol Prog Ser 272:69–76

    Article  Google Scholar 

  • Wotton DM, O’Brien C, Stuart MD, Fergus DJ (2004) Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Mar Pollut Bull 49:844–849

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank JC Gomes that helped in the field and Elite Dive Center that supported with SCUBA diving equipment. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Ciências do Mar 1137/2010), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ; E-26/111.574/2014 and E26/201.286/2014) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 305330/2010-1). MCM acknowledges a PhD scholarship provided by CAPES; BMP a fellowship provided by FAPERJ and CAPES. This study was carried out under license numbers INEA004/2012 and ICMBio19606-1. This article is no. 29 from the Projeto Coral-Sol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel C. Creed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creed, J.C., Masi, B.P. & Mantelatto, M.C. Experimental evaluation of vinegar (acetic acid) for control of invasive corals (Tubastraea spp.) and a review of knowledge for other aquatic pests. Biol Invasions 21, 1227–1247 (2019). https://doi.org/10.1007/s10530-018-1895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-018-1895-9

Keywords

Navigation