Skip to main content

Advertisement

Log in

Therapeutic applications of CRISPR/Cas9 system in gene therapy

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Gene therapy is based on the principle of the genetic manipulation of DNA or RNA for treating and preventing human diseases. The clustered regularly interspaced short palindromic repeats/CRISPR associated nuclease9 (CRISPR/Cas9) system, derived from the acquired immune system in bacteria and archaea, has provided a new tool for accurate manipulation of genomic sequence to attain a therapeutic result. The advantage of CRISPR which made it an easy and flexible tool for diverse genome editing purposes is that a single protein (Cas9) complex with 2 short RNA sequences, function as a site-specific endonuclease. Recently, application of CRISPR/Cas9 system has become popular for therapeutic aims such as gene therapy. In this article, we review the fundamental mechanisms of CRISPR-Cas9 function and summarize preclinical CRISPR-mediated gene therapy reports on a wide variety of disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527:192–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LS Jr, Goldman FD, Townes TM (2015) Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep 12:1668–1677

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6:22312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I (2017) CRISPR/Cas9: transcending the reality of genome editing. Mol Ther Nucl Acids 7:211–222

    Article  CAS  Google Scholar 

  • De Ravin SS, Li L, Wu X, Choi U, Allen C, Koontz S, Lee J, Theobald-Whiting N, Chu J, Garofalo M, Sweeney C, Kardava L, Moir S, Viley A, Natarajan P, Su L, Kuhns D, Zarember KA, Peshwa MV, Malech HL (2017) CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci Transl Med 9:eaah3480

    Article  PubMed  CAS  Google Scholar 

  • Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539:384–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Refaey M, Xu L, Gao Y, Canan BD, Adesanya TMA, Warner SC, Akagi K, Symer DE, Mohler PJ, Ma J, Janssen PML, Han R (2017) In vivo genome editing restores dystrophin expression and cardiac function in Dystrophic mice. Circ Res 121:923–929

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fineran PC, Dy RL (2014) Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol 18:83–89

    Article  PubMed  CAS  Google Scholar 

  • Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH, Verma IM (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 12:1385–1390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibson GJ, Yang M (2017) What rheumatologists need to know about CRISPR/Cas9. Nat Rev Rheumatol 13:205–216

    Article  PubMed  CAS  Google Scholar 

  • Hainzl S, Peking P, Kocher T, Murauer EM, Larcher F, Del Rio M, Duarte B, Steiner M, Klausegger A, Bauer JW, Reichelt J, Koller U (2017) COL7A1 editing via CRISPR/Cas9 in recessive dystrophic Epidermolysis bullosa. Mol Ther 25:2573–2584

    Article  PubMed  CAS  Google Scholar 

  • Jing W, Zhang X, Sun W, Hou X, Yao Z, Zhu Y (2015) CRISPR/CAS9-mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264.7 cells. Biomed Res Int 2015:326042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee PC, Truong B, Vega-Crespo A, Gilmore WB, Hermann K, Angarita SA, Tang JK, Chang KM, Wininger AE, Lam AK, Schoenberg BE, Cederbaum SD, Pyle AD, Byrne JA, Lipshutz GS (2016) Restoring ureagenesis in hepatocytes by CRISPR/Cas9-mediated genomic addition to arginase-deficient induced pluripotent stem cells. Mol Ther Nucl Acids 5:e394

    Article  CAS  Google Scholar 

  • Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T (2015) Precise correction of the Dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154

    Article  CAS  Google Scholar 

  • Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3:e04766

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Yali, Yang Yi, Kang Xiangjin, Lin Bin, Qian Yu, Song Bing, Gao Ge, Chen Yaoyong, Sun Xiaofang, Li Xiaoping, Lei Bu, Fan Yong (2017) One-step biallelic and scarless correction of a β-thalassemia mutation in patient-specific iPSCs without drug selection. Mol Ther Nucl Acids 6:57–67

    Article  CAS  Google Scholar 

  • Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim JS, Kaul S, Mitalipov S (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548:413–419

    Article  PubMed  CAS  Google Scholar 

  • Maeder ML, Gersbach CA (2016) Genome-editing Technologies for gene and cell therapy. Mol Ther 24:430–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monteys AM, Ebanks SA, Keiser MS, Davidson BL (2017) CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 25:12–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nygaard S, Barzel A, Haft A, Major A, Finegold M, Kay MA, Grompe M (2016) A universal system to select gene-modified hepatocytes in vivo. Sci Transl Med 8:342

    Article  CAS  Google Scholar 

  • Ohmori T, Nagao Y, Mizukami H, Sakata A, Muramatsu SI, Ozawa K, Tominaga SI, Hanazono Y, Nishimura S, Nureki O, Sakata Y (2017) CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci Rep 7:4159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouellet DL, Cherif K, Rousseau J, Tremblay JP (2017) Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia. Gene Ther 24:265–274

    Article  PubMed  CAS  Google Scholar 

  • Pankowicz FP, Barzi M, Legras X, Hubert L, Mi T, Tomolonis JA, Ravishankar M, Sun Q, Yang D, Borowiak M, Sumazin P, Elsea S, Bissig-Choisat B, Bissig KD (2016) Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun 7:12642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW, Kim JS (2015) Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17:213–220

    Article  PubMed  CAS  Google Scholar 

  • Peddle CF, MacLaren RE (2017) The application of CRISPR/Cas9 for the treatment of retinal diseases. Yale J Biol Med 90:533–541

    PubMed  PubMed Central  Google Scholar 

  • Reardon S (2016) First CRISPR clinical trial gets green light from US panel. Nat Methods 5:374–375

    Google Scholar 

  • Ren Jiangtao, Zhao Yangbing (2017) Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 8:634–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shinkuma S, Guo Z, Christiano AM (2016) Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Proc Natl Acad Sci USA 113:5676–5681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, Jang YY, Cheng L, Ye Z (2015) Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther 23:570–577

    Article  PubMed  CAS  Google Scholar 

  • Soppe JA, Lebbink RJ (2017) Antiviral goes viral: harnessing CRISPR/Cas9 to combat viruses in humans. Trends Microbiol 25(10):833–850

    Article  PubMed  CAS  Google Scholar 

  • Talan Jamie (2015) News from the Society for Neuroscience Annual Meeting: gene editing techniques show promise in silencing or inhibiting the mutant Huntington’s disease gene. Neurol Today 15:14–16

    Google Scholar 

  • Teimourian S, Abdollahzadeh R (2015) Technology developments in biological tools for targeted genome surgery. Biotechnol Lett 37:29–39

    Article  PubMed  CAS  Google Scholar 

  • Turan S, Farruggio AP, Srifa W, Day JW, Calos MP (2016) Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular Dystrophy. Mol Ther 24:685–696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Agtmaal EL, Andre LM, Willemse M, Cumming SA, van Kessel IDG, Wjaa van den Broek G, Gourdon D, Furling V, Mouly DG, Monckton DG, Wansink DG (2017) CRISPR/Cas9-Induced (CTGCAG)n repeat instability in the myotonic Dystrophy type 1 locus: implications for therapeutic genome editing. Mol Ther 25:24–43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Raghavan A, Chen T, Qiao L, Zhang Y, Ding Q, Musunuru K (2016) CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo-brief report. Arterioscler Thromb Vasc Biol 36:783–786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Yi F, Lina F, Yang J, Wang S, Wang Z, Suzuki K, Sun L, Xiuling X, Yang Y, Qiao J, Belmonte JCI, Yang Z, Yuan Y, Jing Q, Liu GH (2017) CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 8:365–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie C, Zhang YP, Song L, Qi W, Jialu H, Danbo L, Yang Z, Zhang J, Xiao J, Zhou B, Du JL, Jing N, Liu Y, Wang Y, Li BL, Song BL, Yan Y (2016) Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res 26:1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, Yu H, Xu C, Morizono H, Musunuru K, Batshaw ML, Wilson JM (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34:334–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A, Bolukbasi MF, Walsh S, Bogorad RL, Gao G, Weng Z, Dong Y, Koteliansky V, Wolfe SA, Langer R, Xue W, Anderson DG (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34:328–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu P, Furen W, Mosenson J, Zhang H, He TC, Wen-Shu W (2017) CRISPR/Cas9-mediated genome editing corrects Dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol Ther Nucl Acids 7:31–41

    Article  CAS  Google Scholar 

  • Zych AO, Bajor M, Zagozdzon R (2018) Application of genome editing techniques in immunology. Arch Immunol Ther Exp (Warsz). https://doi.org/10.1007/s00005-018-0504-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Teimourian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollanoori, H., Teimourian, S. Therapeutic applications of CRISPR/Cas9 system in gene therapy. Biotechnol Lett 40, 907–914 (2018). https://doi.org/10.1007/s10529-018-2555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2555-y

Keywords

Navigation