Skip to main content
Log in

Genetic engineering techniques for lactic acid bacteria: construction of a stable shuttle vector and expression vector for β-glucuronidase

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The shuttle vector, pUL6erm, was constructed by using a replicon from pL2, a multiple cloning site, colE1 ori, the ori of Gram-negative bacteria from vector pUC19, and the erythromycin resistance gene from pVA838 as a selection marker. pUL6erm could be transformed easily and maintained stably in Lactococcus lactis, Streptococcus thermophilus, Lactobacillus plantarum and Lactobacillus casei. Transformation assays of pUL6erm indicated that it had a narrow host range. β-Glucuronidase was induced in the presence of 0.3 M NaCl and 50 mM glutamate and expressed at 2.4 U mg−1 with the expression vector (pUL6erm–gadR–GUS) constructed based on pUL6erm carrying β-glucuronidase gene wuth a chloride-inducible (gadR) expression cassette using Pgad as promoter. Therefore, pUL6erm and pUL6erm–gadR–GUS might be a safe and useful genetic tool for the improvement of lactic acid bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alegre MT, Rodriguez MC, Mesas JM (2005) Nucleotide sequence, structural organization and host range of pRS4, a small cryptic Pediococcus pentosaceus plasmid that contains two cassettes commonly found in other lactic acid bacteria. FEMS Microbiol Lett 250:151–156

    Article  CAS  PubMed  Google Scholar 

  • An HY, Miyamoto T (2006) Cloning and sequence of plasmid pLC494 isolated from human intestinal Lactobacillus casei: construction of an Escherichia coliLactobacillus shuttle vector. Plasmid 55:128–134

    Article  CAS  PubMed  Google Scholar 

  • Anderson DG, McKay LL (1983) Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beltramo C, Oraby M, Burel G et al (2004) A new vector, pGID052, for genetic transfer in Oenococcus oeni. FEMS Microbiol Lett 236:53–60

    CAS  PubMed  Google Scholar 

  • Chang SM, Yan TR (2007) DNA sequence analysis of a cryptic plasmid pL2 from Lactococcus lactis subsp. lactis. Biotechnol Lett 29:1519–1527

    Article  CAS  PubMed  Google Scholar 

  • Chang SM, Tsai CL, Wee WC, Yan TR (2013) Isolation and functional study of potentially probiotic Lactobacilli from Taiwan traditional paocai. Afr J Microbiol Res 7:683–691

    CAS  Google Scholar 

  • de Vos WM (1999) Gene expression systems for lactic acid bacteria. Curr Opin Microbiol 2:289–295

    Article  PubMed  Google Scholar 

  • Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gosalbes MJ, Esteban CD, Galan JL, Perez-Martinez G (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66:4822–4828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gravesen A, Josephsen J, von Wright A, Vogensen FK (1995) Characterization of the replicon from the lactococcal theta-replicating plasmid pJW563. Plasmid 34:105–118

    Article  CAS  PubMed  Google Scholar 

  • Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klijn A, Moine D, Delley M et al (2006) Construction of a reporter vector for analysis of Bifidobacterium longum promoters. Appl Environ Microbiol 72:6401–7405

    Google Scholar 

  • Marugg JD, Meijer W, Van Kranenburg R et al (1995) Medium-dependent regulation of proteinase gene expression in Lactocccus lactis: control of transcription initiation by specific dipeptides. J Bacteriol 177:2982–2989

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park WJ, Lee KH, Lee JM et al (2004) Characterization of pC7 from Lactobacillus paraplantarum C7 derived from Kimchi and development of lactic acid bacteria–Escherichia coli shuttle vector. Plasmid 52:84–88

    Article  CAS  PubMed  Google Scholar 

  • Perez-Arellano I, Zuniga M, Perez-Martinez G (2001) Construction of compatible wide-host-range shuttle vector for lactic acid bacteria and Escherichia coli. Plasmid 46:106–116

    Article  CAS  PubMed  Google Scholar 

  • Platteeuw C, Simons G, de Vos WM (1994) Use of the Escherichia coli β-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl Environ Microbiol 60:587–593

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pouwels PH, Leer RJ (1993) Genetics of lactobacilli: plasmids and gene expression. Antonie Van Leeuwenhoek 64:85–107

    Article  PubMed  Google Scholar 

  • Projan SJ, Carleton S, Novick RP (1983) Determination of plasmid copy number by fluorescence densitometry. Plasmid 9:182–190

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sander JW, Venema G, Kok J (1997) A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Appl Environ Microbiol 63:4877–4882

    Google Scholar 

  • Takala TM, Saris PEJ (2002) A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol 59:467–471

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu D, Osaki M, Sekizaki T (2001) Construction and characterization of Streptococcus suisEscherichia coli shuttle cloning vector. Plasmid 45:101–113

    Article  CAS  PubMed  Google Scholar 

  • Wright A, Raty K (1993) The nucleotide sequence for the replication region of pSV40, a lactococcal food grade cloning vector. Lett Appl Microbiol 17:25–28

    Article  Google Scholar 

  • Xiong AS, Peng RH, Zhuang J et al (2007) Directed evolution of beta-galactosidase from Escherichia coli into beta-glucuronidase. J Biochem Mol Biol 40:419–425

    Article  CAS  PubMed  Google Scholar 

  • Yan TR, Wang MR, Chen CH (1998) A facile PCR method for detecting replication mode of lactococcial plasmids. Biotechnol Tech 12:85–89

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants NSC 90-2214-E-036-005 and NSC 91-2214-E-036-001 from the National Science Council, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsong-Rong Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SM., Yan, TR. Genetic engineering techniques for lactic acid bacteria: construction of a stable shuttle vector and expression vector for β-glucuronidase. Biotechnol Lett 36, 327–335 (2014). https://doi.org/10.1007/s10529-013-1363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1363-7

Keywords

Navigation