Skip to main content

Advertisement

Log in

Proteome profile of bovine ruminal epithelial tissue based on GeLC–MS/MS

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The proteome of rumen epithelial tissue was analysed by SDS-PAGE coupled with LC–MS/MS. 813 non-redundant proteins were identified of which 7.4 % featured membrane-spanning domains and 15.4 % harboured a signal peptide. According to the gene ontology annotation, the most abundant proteins exhibited binding activities related to their molecular functions, were proteins of cellular components or belonged to various metabolic processes. A predominant group of canonical pathways in the rumen epithelial tissue was identified using the IPA software. The GeLC–MS/MS approach was used to characterise the entire protein expression repertoire in rumen tissue, providing a more detailed understanding of the important biological processes in the rumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdoun K, Stumpff F, Martens H (2006) Ammonia and urea transport across the rumen epithelium: a review. Anim Health Res Rev 7:43–59

    Article  PubMed  Google Scholar 

  • Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I (2011) Farm animal proteomics–a review. J Proteomics 74:282–293

    Article  PubMed  CAS  Google Scholar 

  • Bondzio A, Gabler C, Badewien-Rentzsch B, Schulze P, Martens H, Einspanier R (2011) Identification of differentially expressed proteins in ruminal epithelium in response to a concentrate-supplemented diet. Am J Physiol Gastrointest Liver Physiol 301:G260–268

    Article  PubMed  CAS  Google Scholar 

  • Fu-Jun L, Hai-Yan W, Jian-Yuan L (2012) A new analysis of testicular proteins through integrative bioinformatics. Mol Biol Rep 39:3965–3970

    Article  PubMed  Google Scholar 

  • Gerling IC, Singh S, Lenchik NI, Marshall DR, Wu J (2006) New data analysis and mining approaches identify unique proteome and transcriptome markers of susceptibility to autoimmune diabetes. Mol Cell Proteomics 5:293–305

    PubMed  CAS  Google Scholar 

  • Klopfleisch R, Gruber AD (2012) Transcriptome and proteome research in veterinary science: what is possible and what questions can be asked? ScientificWorldJournal 2012:254962

    Article  PubMed  Google Scholar 

  • Krishnan S, Gaspari M, Della Corte A, Bianchi P, Crescente M, Cerletti C, Torella D, Indolfi C, de Gaetano G, Donati MB, Rotilio D, Cuda G (2011) OFFgel-based multidimensional LC–MS/MS approach to the cataloguing of the human platelet proteome for an interactomic profile. Electrophoresis 32:686–695

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Wu G, Culley DE, Scholten JC, Zhang W (2007) Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 27:63–75

    Article  PubMed  CAS  Google Scholar 

  • Peddinti D, Memili E, Burgess SC (2010) Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction. PLoS ONE 5:e11240

    Article  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Pisanu S, Ghisaura S, Pagnozzi D, Biosa G, Tanca A, Roggio T, Uzzau S, Addis MF (2011) The sheep milk fat globule membrane proteome. J Proteomics 74:350–358

    Article  PubMed  CAS  Google Scholar 

  • Schirle M, Heurtier MA, Kuster B (2003) Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 2:1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Sehested J, Diernaes L, Moller PD, Skadhauge E (1999) Transport of butyrate across the isolated bovine rumen epithelium–interaction with sodium, chloride and bicarbonate. Comp Biochem Physiol A Mol Integr Physiol 123:399–408

    Article  PubMed  CAS  Google Scholar 

  • Steele MA, Croom J, Kahler M, Alzahal O, Hook SE, Plaizier K, McBride BW (2011) Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. Am J Physiol Regul Integr Comp Physiol 300:R1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Penner GB, Beauchemin KA, Oba M, Guan LL (2010) Comparative analysis of gene expression profiles in ruminal tissue from Holstein dairy cows fed high or low concentrate diets. Comp Biochem Physiol Part D Genomics Proteomics 5:274–279

    Article  PubMed  Google Scholar 

  • Torres-Garcia W, Zhang W, Runger GC, Johnson RH, Meldrum DR (2009) Integrative analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: a non-linear model to predict abundance of undetected proteins. Bioinformatics 25:1905–1914

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Hill S, Luther JM, Hachey DL, Schey KL (2012) Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). Proteomics 12:329–338

    Article  PubMed  CAS  Google Scholar 

  • Yousuf MA, Mi-ichi F, Nakada-Tsukui K, Nozaki T (2010) Localization and targeting of an unusual pyridine nucleotide transhydrogenase in Entamoeba histolytica. Eukaryot Cell 9:926–933

    Article  PubMed  Google Scholar 

  • Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, Li XR, Beuerman RW (2012) In-depth analysis of the human tear proteome. J Proteomics 75:3877–3885

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Key Basic Research Program of China (Project No. 2011CB100805).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 3340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Wang, J., Yuan, T. et al. Proteome profile of bovine ruminal epithelial tissue based on GeLC–MS/MS. Biotechnol Lett 35, 1831–1838 (2013). https://doi.org/10.1007/s10529-013-1291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1291-6

Keywords

Navigation