Skip to main content

Advertisement

Log in

l-Lysine suppresses myofibrillar protein degradation and autophagy in skeletal muscles of senescence-accelerated mouse prone 8

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Sarcopenia is a condition of the loss of muscle mass that is associated with aging and that increases the risk for bedridden state, thereby warranting studies of interventions that attenuate sarcopenia. Here the effects of 2-month dietary l-lysine (Lys) supplementation (1.5–3.0 %) on myofibrillar protein degradation and major proteolytic systems were investigated in senescence-accelerated mouse prone 8 (SAMP8). At 36 weeks of age, skeletal muscle and lean body mass was reduced in SAMP8 when compared with control senescence-accelerated mouse resistant 1 (SAMR1). The myofibrillar protein degradation, which was evaluated by the release of 3-methylhistidine, was stimulated in SAMP8, and the autophagy activity, which was evaluated by light chain 3-II, was stimulated in the skeletal muscle of SAMP8. The activation of ubiquitin-proteasome system was not observed in the muscles of SAMP8. However, myofibrillar protein degradation and autophagic activity in skeletal muscles of SAMP8 were suppressed by dietary intake of 3.0 % Lys. The present data indicate that myofibrillar protein degradation by bulk autophagy is stimulated in the skeletal muscles of SAMP8 and that dietary Lys supplementation attenuates sarcopenia in SAMP8 by suppressing autophagic proteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

LC3:

Light chain 3

Lys:

l-Lysine

MeHis:

3-Methylhistidine

mTOR:

Mammalian target of rapamycin

Mul1:

Mitochondrial E3 ubiquitin protein ligase 1

MuRF1:

Muscle ring-finger protein 1

PGC-1α:

Peroxisome proliferator activated receptor γ co-activator 1α

qRT-PCR:

Quantitative reverse transcription PCR

SAMP8:

Senescence-accelerated mouse prone 8

SAMR1:

Senescence-accelerated mouse resistant 1

S6K1:

p70 ribosomal protein S6 kinase 1

UPS:

Ubiquitin-proteasome system

4E-BP1:

Eukaryotic initiation factor 4E binding protein 1

References

  • Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B (2010) Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 285:39597–395608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angcajas AB, Hirai N, Kaneshiro K, Karim MR, Horii Y, Kubota M, Fujimura S, Kadowaki M (2014) Diversity of amino acid signaling pathways on autophagy regulation: a novel pathway for arginine. Biochem Biophys Res Commun 446:8–14

    Article  CAS  PubMed  Google Scholar 

  • Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR (2000) Leucine stimulates translation initiation in skeletal muscle of post absorptive rats via a rapamycin-sensitive pathway. J Nutr 130:2413–2419

    CAS  PubMed  Google Scholar 

  • Børsheim E, Bui QU, Tissier S, Kobayashi H, Ferrando AA, Wolfe RR (2008) Effect of amino acid supplementation on muscle mass, strength and physical function in elderly. Clin Nutr 27:189–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalil S, Pierre N, Bakker AD, Manders RJ, Pletsers A, Francaux M, Klein-Nulend J, Jaspers RT, Deldicque L (2015) Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle. Biochem Biophys Res Commun 468:702–707

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19:422–424

    CAS  PubMed  Google Scholar 

  • Derave W, Eijnde BO, Ramaekers M, Hespel P (2005) Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence. Exp Gerontol 40:562–572

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Quo W, Wang F, Li C, Xie Y, Zheng X, Shi H (2015) Electroacupuncture upregulates SIRT1-dependent PGC-1α expression in SAMP8 mice. Med Sci Monit 21:3356–3362

    Article  PubMed  PubMed Central  Google Scholar 

  • Edström E, Altun M, Hägglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol Ser A 61:663–674

    Article  Google Scholar 

  • Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N (2016) Autophagy as a potential target for sarcopenia. J Cell Physiol 231:1450–1459

    Article  CAS  PubMed  Google Scholar 

  • Foletta VC, White LJ, Larsen AE, Léger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461:325–335

    Article  CAS  PubMed  Google Scholar 

  • García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Muñoz-Cánoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42

    Article  PubMed  Google Scholar 

  • Ghosh S, Lertwattanarak R, Lefort N, Molina-Carrion M, Joya-Galeana J, Bowen BP, Garduno-Garcia Jde J, Abdul-Ghani M, Richardson A, DeFronzo RA, Mandarino L, Van Remmen H, Musi N (2011) Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes 60:2051–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo AY, Leung KS, Siu PM, Qin JH, Chow SK, Qin L, Li CY, Cheung WH (2015) Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8). Exp Anim 64:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatazawa Y, Senoo N, Tadaishi M, Ogawa Y, Ezaki O, Kamei Y, Miura S (2015) Metabolomic analysis of the skeletal muscle of mice overexpressing PGC-1α. PLoS ONE 10:e0129084

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes DC, Stewart CE, Sculthorpe N, Dugdale HF, Yousefian F, Lewis MP, Sharples AP (2016) Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors. Biogerontology 17:619–639

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph AM, Adhihetty PJ, Buford TW, Wohlgemuth SE, Lees HA, Nguyen LM, Aranda JM, Sandesara BD, Pahor M, Manini TM, Marzetti E, Leeuwenburgh C (2012) The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell 11:801–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378

    Article  CAS  PubMed  Google Scholar 

  • Lamont LS, McCullough AJ, Kalhan SC (2001) Gender differences in leucine, but not lysine, kinetics. J Appl Physiol 91:357–362

    CAS  PubMed  Google Scholar 

  • Liu HW, Chan YC, Wang MF, Wei CC, Chang SJ (2015) Dietary (-)-epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse. J Agric Food Chem 63:8407–8417

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T, Hirano J, Yoshizawa F, Nishizawa N (1998) Myofibrillar protein catabolism is rapidly suppressed following protein feeding. Biosci Biotechnol Biochem 62:1932–1937

    Article  CAS  PubMed  Google Scholar 

  • Narici MV, Maffulli N (2010) Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95:139–159

    Article  CAS  PubMed  Google Scholar 

  • Pagano TB, Wojcik S, Costagliola A, De Biase D, Iovino S, Iovane V, Russo V, Papparella S, Paciello O (2015) Age related skeletal muscle atrophy and upregulation of autophagy in dogs. Vet J 206:54–60

    Article  CAS  PubMed  Google Scholar 

  • Prado CM, Wells JC, Smith SR, Stephan BC, Siervo M (2012) Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr 31:583–601

    Article  CAS  PubMed  Google Scholar 

  • Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  • Russ DW, Boyd IM, McCoy KM, McCorkle KW (2016) Muscle-specificity of age-related changes in markers of autophagy and sphingolipid metabolism. Biogerontology 16:747–759

    Article  Google Scholar 

  • Sakuma K, Kinoshita M, Ito Y, Aizawa M, Aoi W, Yamaguchi A (2016) p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice. J Cachexia Sarcopenia Muscle 7:204–212

    Article  PubMed  Google Scholar 

  • Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103:16260–16265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, Meskers CG, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano AL, Toniolo L, Larsson L, Maier AB, Muñoz-Cánoves P, Musarò A, Pende M, Reggiani C, Rizzuto R, Schiaffino S (2013) Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology 14:303–323

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Ito Y, Nagasawa T (2013) Regulation of skeletal muscle protein degradation and synthesis by oral administration of lysine in rats. J Nutr Sci Vitaminol 59:412–419

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Ito Y, Nagasawa T (2014) Lysine suppresses myofibrillar protein degradation by regulating the autophagic-lysosomal system through phosphorylation of Akt in C2C12 cells. Springerplus 3:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato T, Ito Y, Nagasawa T (2015) Dietary l-lysine suppresses autophagic proteolysis and stimulates Akt/mTOR signaling in the skeletal muscle of rats fed a low-protein diet. J Agric Food Chem 63:8192–8198

    Article  CAS  PubMed  Google Scholar 

  • Sin TK, Yu AP, Yung BY, Yip SP, Chan LW, Wong CS, Rudd JA, Siu PM (2015) Effects of long-term resveratrol-induced SIRT1 activation on insulin and apoptotic signalling in aged skeletal muscle. Acta Diabetol 52:1063–1075

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Ito Y, Nishizawa N, Nagasawa T (2009) Regulation of muscle protein degradation, not synthesis, by dietary leucine in rats fed a protein-deficient diet. Amino Acids 37:609–616

    Article  CAS  PubMed  Google Scholar 

  • Takeda T (1999) Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging 20:105–110

    Article  CAS  PubMed  Google Scholar 

  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA 106:20405–20410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White Z, White RB, McMahon C, Grounds MD, Shavlakadze T (2016) High mTORC1 signaling is maintained, while protein degradation pathways are perturbed in old murine skeletal muscles in the fasted state. Int J Biochem Cell Biol 78:10–21

    Article  CAS  PubMed  Google Scholar 

  • Young VR, Munro HN (1978) Nτ–methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc 37:2291–3000

    CAS  PubMed  Google Scholar 

  • Yun J, Puri R, Yang H, Lizzio MA, Wu C, Sheng ZH, Guo M (2014) MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife 3:e01958

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Amino acids were provided by Ajinomoto Co., Inc. Primer sequences for atrogin-1 and MuRF1 were provided by Professor Takeshi Nikawa, Tokushima University, Japan.

Funding

This work was supported by the Sasakawa Scientific Research Grant from The Japan Science Society (Grant No. 27-414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Sato.

Ethics declarations

Conflict of interest

We declare no conflict of interest related to this study.

Informed consent

Human subject is not involved in this study.

Research involving Animals

Male SAMP8 (15-week-old, 27–35 g, n = 17) and SAMR1 (15-week-old, 31–35 g, n = 6) were purchased from Japan SLC, Inc. (Shizuoka, Japan). All animal protocols were approved by the Iwate University Animal Research Committee and were performed in compliance with the Guidelines for Animal Experiments of Iwate University (approval number, A201517).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Ito, Y. & Nagasawa, T. l-Lysine suppresses myofibrillar protein degradation and autophagy in skeletal muscles of senescence-accelerated mouse prone 8. Biogerontology 18, 85–95 (2017). https://doi.org/10.1007/s10522-016-9663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-016-9663-7

Keywords

Navigation