Skip to main content

Advertisement

Log in

Elevated extension of longevity by cyclically heat stressing a set of recombinant inbred lines of Drosophila melanogaster throughout their adult life

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

An extremely high (about 100 %) increase in longevity is reported for a subset of recombinant inbred lines (RILs) of Drosophila melanogaster subjected to a cyclic heat stress throughout the adult life. Previous work showed that both longevity and heat sensitivity highly differed among RILs. The novel heat stress treatment used in this study consisted of 5 min at 38 °C applicated approximately every 125 min throughout the adult life starting at the age of 2 days. In spite of the exceptionally high increase in longevity in a set of RILs, the same heat stress treatment reduced rather than increased longevity in other RILs, suggesting that heat-induced hormesis is dependent on the genotype and/or the genetic background. Further, one quantitative trait locus (QTL) was identified for heat-induced hormesis on chromosome 2 (bands 28A1-34D2) in one RIL panel (RIL-D48) but it was not significant in its reciprocal panel (RIL-SH2). The level of heat-induced hormesis showed a sexual dimorphism, with a higher number of lines exhibiting higher hormesis effects in males than in females. The new heat stress treatment in this study suggests that longevity can be further extended than previously suggested by applying a cyclic and mild stress throughout the life, depending on the genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bubliy OA, Loeschcke V (2005) Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J Evol Biol 18:789–803

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V (2015) What is hormesis and its relevance to healthy aging and longevity? Biogerontology 16:693–707

    Article  PubMed  Google Scholar 

  • Carhan A, Tang K, Shirras CA, Shirras AD, Isaac RE (2011) Loss of Angiotensin-converting enzyme-related (ACER) peptidase disrupts night-time sleep in adult Drosophila melanogaster. J Exp Biol 214:680–686

    Article  CAS  PubMed  Google Scholar 

  • Cypser JR, Johnson TE (2002) Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A 57:B109–B114

    Article  Google Scholar 

  • Defays R, Gómez FH, Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM (2011) Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster. Exp Gerontol 46:819–826

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Toyama A, Amrein H (2008) A male-specific fatty acid omega-hydroxylase, SXE1, is necessary for efficient male mating in Drosophila melanogaster. Genetics 180:179–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez FH, Bertoli CI, Sambucetti P, Scannapieco AC, Norry FM (2009) Heat-induced hormesis in longevity as correlated response to thermal-stress selection in Drosophila buzzatii. J Therm Biol 34:17–22

    Article  Google Scholar 

  • Gomez FH, Sambucetti P, Norry FM (2013) Effects of dietary composition on life span of Drosophila buzzatii and its short-lived sibling species D. koepferae. Biogerontology 14:423–429

    Article  CAS  PubMed  Google Scholar 

  • Haug-Collet K, Pearson B, Webel R, Szerencsei RT, Winkfein RJ, Schnetkamp PPM, Colley NJ (1999) Cloning and characterization of a potassium-dependent sodium/calcium exchanger in Drosophila. J Cell Biol 147:659–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hercus MJ, Loeschcke V, Rattan SIS (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4:149–156

    Article  CAS  PubMed  Google Scholar 

  • Khazaeli AA, Tatar M, Pletcher SD, Curtsinger JW (1997) Heat-induced longevity extension in Drosophila. 1. Heat treatment, mortality, and thermotolerance. J Gerontol A 52:B48–B52

    Article  CAS  Google Scholar 

  • Le Bourg E (2011) Using Drosophila melanogaster to study the positive effects of mild stress on aging. Exp Gerontol 46:345–348

    Article  PubMed  Google Scholar 

  • Le Bourg E, Minois N, Bullens P, Bearet P (2000) A mild stress due to hypergravity exposure at young age increases longevity in Drosophila melanogaster males. Biogerontology 1:145–155

    Article  PubMed  Google Scholar 

  • Le Bourg E, Malod K, Massou I (2012) The NF-κB-like factor DIF could explain some positive effects of a mild stress on longevity, behavioral aging, and resistance to strong stresses in Drosophila melanogaster. Biogerontology 13:445–455

    Article  PubMed  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal-stress. Proc Natl Acad Sci (USA) 92:7540–7544

    Article  CAS  Google Scholar 

  • Mandavilli BS, Santos JH, Van Houten B (2002) Mitochondrial DNA repair and aging. Mutat Res 509:127–151

    Article  CAS  PubMed  Google Scholar 

  • McColl G, Hoffmann AA, McKechnie SW (1996) Response to two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster. Genetics 143:1615–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merte J, Nichols R (2002) Drosophila melanogaster myotropins have unique functions and signaling pathways. Peptides 23:757–763

    Article  CAS  PubMed  Google Scholar 

  • Miller E (2013) Online statistics calculators, Evan’s Awesome A/B Tools. http://www.evanmiller.org/ab-testing/survival-curves.html

  • Moskalev AA, Plyusnina EN, Shaposhnikov MV (2011) Radiation hormesis and radioadaptive response in Drosophila melanogaster flies with different genetic backgrounds: the role of cellular stress-resistance mechanisms. Biogerontology 12:253–263

    Article  CAS  PubMed  Google Scholar 

  • Norry FM, Loeschcke V (2003) Heat-induced expression of a molecular chaperone decreases by selecting for long-lived individuals. Exp Gerontol 38:673–681

    Article  CAS  PubMed  Google Scholar 

  • Norry FM, Dahlgaard J, Loeschcke V (2004) Quantitative trait loci affecting knockdown resistance to heat stress in Drosophila melanogaster. Mol Ecol 13:3585–3594

    Article  CAS  PubMed  Google Scholar 

  • Norry FM, Scannapieco AC, Sambucetti P, Bertoli C, Loeschcke V (2008) QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. Mol Ecol 17:4570–4581

    Article  CAS  PubMed  Google Scholar 

  • Olsen A, Vantipalli MC, Lithgow GJ (2006) Lifespan extension of Caenorhabditis elegans following repeated mild hormetic heat treatments. Biogerontology 7:221–230

    Article  PubMed  Google Scholar 

  • Phelan JP, Archer MA, Beckman KA, Chippindale AK, Nusbaum TJ, Rose MR (2003) Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution 57:527–535

    PubMed  Google Scholar 

  • Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Sambucetti PD, Loeschcke V, Norry FM (2015) Patterns of longevity and fecundity at two temperatures in a set of heat-selected recombinant inbred lines of Drosophila melanogaster. Biogerontology 16:801–810

    Article  CAS  PubMed  Google Scholar 

  • Sarup P, Loeschcke V (2011) Life extension and the position of the hormetic zone depend on sex and genetic background in Drosophila melanogaster. Biogerontology 12:109–117

    Article  PubMed  Google Scholar 

  • Scannapieco AC, Sørensen J, Loeschcke V, Norry FM (2007) Heat-induced hormesis in longevity of two sibling Drosophila species. Biogerontology 8:315–325

    Article  CAS  PubMed  Google Scholar 

  • Sørensen JG, Nielsen MM, Kruhøffer M, Justesen J, Loeschcke V (2005) Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Cell Stress Chaperon 10:312–328

    Article  Google Scholar 

  • Sørensen JG, Nielsen MM, Loeschcke V (2007) Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. J Evol Biol 20:1624–1636

    Article  PubMed  Google Scholar 

  • StatSoft (1999) STATISTICA for Windows (Computer Program Manual). StatSoft Inc., Tulsa

  • Szular J, Sehadova H, Gentile C, Szabo G, Chou WH, Britt SG, Stanewsky R (2012) Rhodopsin 5- and rhodopsin 6-mediated clock synchronization in Drosophila melanogaster is independent of retinal phospholipase C-β signaling. J Biol Rhythms 27:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tower J (2009) Hsp and aging. Trends Endocrinol Metab 20:216–222

    Article  CAS  PubMed  Google Scholar 

  • Tower J (2011) Heat shock proteins and Drosophila aging. Exp Gerontol 46:355–362

    Article  CAS  PubMed  Google Scholar 

  • Tran TA, Kinch L, Peña-Llopis S, Kockel L, Grishin N, Jiang H, Brugarolas J (2013) Platelet-derived growth factor vascular endothelial growth factor receptor inactivation by sunitinib results in Tsc1/Tsc2-dependent inhibition of TORC1. Mol Cell Biol 33:3762–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SC, Basten J, Zeng ZB (2010) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh, NC

Download references

Acknowledgments

We thank Volker Loeschcke for earlier collaborations with the setup of RILs. We thank comments from two anonymous reviewers. This research was supported by grants from the University of Buenos Aires, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), and Consejo nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) to FMN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico H. Gomez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, F.H., Sambucetti, P. & Norry, F.M. Elevated extension of longevity by cyclically heat stressing a set of recombinant inbred lines of Drosophila melanogaster throughout their adult life. Biogerontology 17, 883–892 (2016). https://doi.org/10.1007/s10522-016-9658-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-016-9658-4

Keywords

Navigation