Skip to main content

Advertisement

Log in

Mitochondrial function and mitochondrial DNA maintenance with advancing age

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullaev SA, Antipova VN, Gaziev AI (2009) Extracellular mutant mitochondrial DNA content is sharply elevated in the blood plasma of irradiated mice. Mol Biol (Mosk) 43:1063–1069

    CAS  Google Scholar 

  • Akbari M, Keijzers G, Maynard S et al (2014) Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair (Amst) 16:44–53

    CAS  Google Scholar 

  • Alexeyev MF (2009) Is there more to aging than mitochondrial DNA and reactive oxygen species? FEBS J 276:5768–5787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ameur A, Stewart JB, Freyer C et al (2011) Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 7(3):e1002028. doi:10.1371/journal.pgen.1002028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anand R, Langer T, Baker MJ (2013) Proteolytic control of mitochondrial function and morphogenesis. Biochim Biophys Acta 1833:195–204

    CAS  PubMed  Google Scholar 

  • Anisimov VN, Bartke A (2013) The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol 87:201–223

    PubMed  Google Scholar 

  • Anisimov VN, Zabezhinski MA, Popovich IG et al (2011) Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10:4230–4236

    CAS  PubMed  Google Scholar 

  • Anson RM, Senturker S, Dizdaroglu M, Bohr VA (1999) Measurement of oxidatively induced base lesions in liver from Wistar rats of different ages. Free Radic Boil Med 27:456–462

    CAS  Google Scholar 

  • Antico AVG, Elguero ME, Poderoso JJ, Carreras MC (2012) Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 16:1150–1180

    Google Scholar 

  • Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ayer A, Tan SX, Grant CM et al (2010) The critical role of glutathione in maintenance of the mitochondrial genome. Free Radic Biol Med 49:1956–1968

    CAS  PubMed  Google Scholar 

  • Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327(1–2):48–60. doi:10.1016/j.canlet.2011.12.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Babbar M, Sheikh MS (2013) Metabolic stress and disorders related to alterations in mitochondrial fission or fusion. Mol Cell Pharmacol 5(3):109–133

  • Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19:1420–1445

    CAS  PubMed  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318

    CAS  PubMed  Google Scholar 

  • Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    CAS  PubMed  Google Scholar 

  • Bartoletti-Stella A, Mariani E, Kurelac I et al (2013) Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1a. Cell Death Dis 4:e663. doi:10.1038/cddis.2013.187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    CAS  PubMed  Google Scholar 

  • Bereiter-Hahn J, Jendrach M (2010) Mitochondrial dynamics. Int Rev Cell Mol Biol 284:1–65

    CAS  PubMed  Google Scholar 

  • Bilal E, Rabadan R, Alexe G et al (2008) Mitochondrial DNA haplogroup D4a Is a marker for extreme longevity in Japan. PLoS One 3(6):e2421. doi:10.1371/journal.pone.0002421

    PubMed Central  PubMed  Google Scholar 

  • Bjelakovic G, Nikolova D, Gluud LL et al (2012) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 14(3):CD007176

    Google Scholar 

  • Blagosklonny MV, Campisi J, Sinclair DA et al (2010) Impact papers on aging in 2009. Aging (Albany NY) 2:111–121

    CAS  PubMed Central  Google Scholar 

  • Bogenhagen DF (2012) Mitochondrial DNA nucleoid structure. Biochim Biophys Acta 1819:914–920

    CAS  PubMed  Google Scholar 

  • Borrás C, Gómez-Cabrera MC, Viña J (2011) The dual role of p53: DNA protection and antioxidant. Free Radic Res 45:643–652

    PubMed  Google Scholar 

  • Bradley MO, Kohn KW (1979) X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution. Nucleic Acids Res 7:793–804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123:951–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broderick S, Rehmet K, Concannon C, Nasheuer HP (2010) Eukaryotic single-stranded DNA binding proteins: central factors in genome stability. Subcell Biochem 50:143–163

    CAS  PubMed  Google Scholar 

  • Bua E, Johnson J, Herbst A et al (2006) Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79:469–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burbulla LF, Fitzgerald JC, Stegen K et al (2014) Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1. Cell Death Dis 5:e1180. doi:10.1038/cddis.2014.103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calvo SE, Mootha VK (2010) The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 11:25–44. doi:10.1146/annurev-genom-082509-141720

  • Campbell CT, Kolesar JE, Kaufman BA (2012) Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 1819:921–929

    CAS  PubMed  Google Scholar 

  • Candas D, Fan M, Nantajit D et al (2013) CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. J Mol Cell Biol 5:166–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caron F, Jacq C, Rouviere-Yaniv J (1979) Characterization of a histone-like protein extracted from yeast mitochondria. Proc Natl Acad Sci USA 76:4265–4269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carraway MS, Suliman HB, Kliment C et al (2008) Mitochondrial biogenesis in the pulmonary vasculature during inhalational lung injury and fibrosis. Antioxid Redox Signal 10:269–275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavallini G, Donati A, Capasso B et al (2014) Effects of stimulation of autophagy on the urinary excretion of biomarkers of the oxidative status. Aging Clin Exp Res 26:13–18. doi:10.1007/s40520-013-0116-8

    PubMed  Google Scholar 

  • Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287

    CAS  PubMed  Google Scholar 

  • Chauhan A, Vera J, Wolkenhauer O (2014) The systems biology of mitochondrial fission and fusion and implications for disease and aging. Biogerontology 15(1):1–12

  • Chen Y, Dorn II GW (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340:471–475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen D, Cao G, Hastings T et al (2002) Age-dependent decline of DNA repair activity for oxidative lesions in rat brain mitochondria. J Neurochem 81:1273–1284

    CAS  PubMed  Google Scholar 

  • Chen JQ, Cammarata PR, Baines CP, Yager JD (2009) Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta 1793:1540–1570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chinnery PF, Hudson G (2013) Mitochondrial genetics. Br Med Bull 106:135–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi YS, Hoon JJ, Min HK et al (2011) Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones. Mol BioSyst 7:1523–1536

    CAS  PubMed  Google Scholar 

  • Chu CT, Ji J, Dagda RK et al (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature Cell Biol 15:1197–1205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Civitarese AE, Carling S, Heilbronn LK et al (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4(3):e76

    PubMed Central  PubMed  Google Scholar 

  • Clayton DA (2003) Mitochondrial DNA replication: what we know. IUBMB Life 55:213–217

    CAS  PubMed  Google Scholar 

  • Clayton DA, Doda JN, Friedberg EC (1974) The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 71:2777–2781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Copeland WC (2012) Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 47:64–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crane JD, Abadi A, Hettinga BP et al (2013) Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle. PLoS One 8(12):e81879. doi:10.1371/journal.pone.0081879

    PubMed Central  PubMed  Google Scholar 

  • Crawford DR, Abramova NE, Davies KJ (1998) Oxidative stress causes a general, calcium- dependent degradation of mitochondrial polynucleotides. Free Radic Biol Med 25:1106–1111

    CAS  PubMed  Google Scholar 

  • Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahm-Daphi J, Sass C, Alberti W (2000) Comparison of biological effects of DNA damage induced by ionizing radiation and hydrogen peroxide in CHO cells. Int J Radiat Biol 76:67–75

    CAS  PubMed  Google Scholar 

  • Dai Y, Zheng K, Clark J, Swerdlow RH et al (2014) Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation. Hum Mol Genet 23:637–647

    CAS  PubMed  Google Scholar 

  • Das S, Mitrovsky G, Vasanthi HR, Das DK (2014) Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Oxid Med Cell Longev. doi:10.1155/2014/345105

    Google Scholar 

  • Deng H, Yuan L (2014) Genetic variants and animal models in SNCA and Parkinson disease. Ageing Res Rev 15:161–176

    CAS  PubMed  Google Scholar 

  • Derbré F, Gomez-Cabrera MC, Nascimento AL et al (2012) Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training. Age (Dordr) 34:669–679

    Google Scholar 

  • Dillon LM, Williams SL, Hida A et al (2012) Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet 21:2288–2297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dominy JE, Puigserver P (2013) Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a015008

    PubMed  Google Scholar 

  • Donati A, Cavallini G, Paradiso C et al (2001) Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions. J Gerontol A Biol Sci Med Sci 56:B375–B383

    CAS  PubMed  Google Scholar 

  • Eldridge A, Fan M, Woloschak G et al (2012) Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low-dose radiation-induced adaptive radioprotection. Free Radic Biol Med 53:1838–1847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellenberger T, Tomkinson AE (2008) Eukaryotic DNA ligases: structural and functional insights. Annu Rev Biochem 77:313–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68:802–806

    CAS  PubMed Central  PubMed  Google Scholar 

  • ESCODD, European Standards Committee on Oxidative DNA Damage (2003) Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Boil Med 34:1089–1099

    Google Scholar 

  • Estaquier J, Vallette F, Vayssiere JL, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183

    CAS  PubMed  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    CAS  PubMed  Google Scholar 

  • Evdokimovsky EV, Ushakova TE, Kudriavtcev AA, Gaziev AI (2011) Alteration of mtDNA copy number, mitochondrial gene expression and extracellular DNA content in mice after irradiation. Radiat Environ Biophys 50:181–188

    CAS  PubMed  Google Scholar 

  • Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699

    CAS  PubMed  Google Scholar 

  • Figge MT, Osiewacz HD, Reichert AS (2013) Quality control of mitochondria during aging: Is there a good and a bad side of mitochondrial dynamics? BioEssays 35:314–322

    CAS  PubMed  Google Scholar 

  • Finley LW, Haigis MC (2009) The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res Rev 8:173–188

    CAS  PubMed  Google Scholar 

  • Frahm T, Mohamed SA, Bruse P et al (2005) Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech Ageing Dev 126:1192–1200

    CAS  PubMed  Google Scholar 

  • Frank M, Duvezin-Caubet S, Koob S et al (2012) Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta 1823:2297–2310

    CAS  PubMed  Google Scholar 

  • Furda AM, Marrangoni AM, Lokshin A, Van Houten B (2012) Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction. DNA Repair (Amst) 11:684–692

    CAS  Google Scholar 

  • Gaweda-Walerych K, Zekanowski C (2013) Integrated pathways of Parkin control over mitochondrial maintenance-relevance to Parkinson’s disease pathogenesis. Acta Neurobiol Exp (Wars) 73:199–224

    Google Scholar 

  • Gaziev AI (1999) DNA damage in cells exposed to ionizing radiation. Radiat Biol Radioecol 39:630–639

    CAS  Google Scholar 

  • Gaziev AI (2013) Pathways for maintenance of mitochondrial DNA integrity and mitochondrial functions in cells exposed to ionizing radiation. Radiat Biol Radioecol 53:117–136

    CAS  Google Scholar 

  • Gaziev AI, Podlutsky AI (2003) Low efficiency of DNA repair system in mitochondria. Tsitologya 45:403–417

    CAS  Google Scholar 

  • Gaziev AI, Shaikhaev GO (2012) Limited repair of critical DNA damage in cells exposed to low dose radiation. In: Nenoi M (ed) Current topics in ionizing radiation research. InTech, Rijeka, pp 51–80

    Google Scholar 

  • Gelino S, Hansen M (2013) Autophagy—an emerging anti-aging mechanism. J Clin Exp Pathol 4:1–24

    Google Scholar 

  • Gilkerson RW, De Vries RL, Lebot P et al (2012) Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum Mol Genet 21:978–990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilley R, Balmanno K, Cope CL, Cook SJ (2013) Adaptation to chronic mTOR inhibition in cancer and in aging. Biochem Soc Trans 41:956–961

    CAS  PubMed  Google Scholar 

  • Gilquin B, Taillebourg E, Cherradi N et al (2010) The AAA+ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes. Mol Cell Biol 30:1984–1996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman J, Taylor R, Zhang Y, Jin S (2010) Autophagy and the degradation of mitochondria. Mitochondrion 10:309–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gredilla R, Bohr VA, Stevnsner T (2010) Mitochondrial DNA repair and association with aging. Exp Gerontol 45:478–488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gredilla R, Garm C, Stevnsner T (2012) Nuclear and mitochondrial DNA repair in selected eukaryotic aging model systems. Oxid Med Cell Longev. doi:10.1155/2012/282438

    PubMed Central  PubMed  Google Scholar 

  • Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gulyaeva NA, Kuznetsova EA, Gaziev AI (2006) Proteins associated with mitochondrial DNA protect it against the action of X-rays and hydrogen peroxide. Biofizika 51:692–697

    Google Scholar 

  • Gulyaeva NA, Abdullaev SA, Malakhova LV et al (2009) Reduction of the number of mutant copies of mitochondrial DNA in tissues of irradiated mice in the postradiation period. Russ J Genet 45:833–839

    CAS  Google Scholar 

  • Guo X, Popadin KY, Markuzon N et al (2010) Repeats, longevity and the sources of mtDNA deletions: evidence from “deletional spectra”. Trends Genet 26:340–343

    PubMed Central  PubMed  Google Scholar 

  • Guo W, Wong S, Li M et al (2012) Testosterone plus low-intensity physical training in late life improves functional performance, skeletal muscle mitochondrial biogenesis, and mitochondrial quality control in male mice. PLoS One 7(12):e51180. doi:10.1371/journal.pone.0051180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728–735

    CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    CAS  PubMed  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann N, Reichwald K, Wittig I et al (2011) Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell 10:824–831

    CAS  PubMed  Google Scholar 

  • He J, Cooper HM, Reyes A, Re MD et al (2012) Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res 40:6109–6121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177–203

    CAS  PubMed  Google Scholar 

  • Holley AK, Bakthavatchalu V, Velez-Roman JM, Clair DK (2011) Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci 12:7114–7162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iborra FJ, Kimura H, Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 24:2–9

    Google Scholar 

  • Islam MM, Nautiyal M, Wynn RM et al (2010) Mobley Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm). J Biol Chem 285:265–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itsara LS, Kennedy SR, Fox EJ et al (2014) Oxidative stress is not a major contributor to somatic mitochondrial dna mutations. PLoS Genet 10(2):e1003974. doi:10.1371/journal.pgen.1003974

    PubMed Central  PubMed  Google Scholar 

  • Jackson S, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson CB, Gallati S, Schaller A (2012) qPCR-based mitochondrial DNA quantification: influence of template DNA fragmentation on accuracy. Biochem Biophys Res Commun 423:441–447

    CAS  PubMed  Google Scholar 

  • Jazwinski SM (2013) The retrograde response: When mitochondrial quality control is not enough. Biochim Biophys Acta 1833:400–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • John JS (2014) The control of mtDNA replication during differentiation and development. Biochim Biophys Acta 1840:1345–1354

    Google Scholar 

  • Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones AW, Yao Z, Vicencio JM et al (2012) PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria–nucleus signaling. Mitochondrion 12:86–99

    CAS  PubMed  Google Scholar 

  • Joseph AM, Adhihetty PJ, Buford TW et al (2012) The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell 11:801–809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joseph AM, Adhihetty PJ, Wawrzyniak NR et al (2013) Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging. PLoS One 8(7):e69327. doi:10.1371/journal.pone.0069327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamenisch Y, Fousteri M, Knoch J et al (2010) Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J Exp Med 207:379–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamileri I, Karakasilioti I, Garinis GA (2012) Nucleotide excision repair: new tricks with old bricks. Trends Genet 28:566–573

    CAS  PubMed  Google Scholar 

  • Kang C, Chung E, Diffee G, Ji LL (2013) Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α. Exp Gerontol 48(11):1343–1350

  • Kanki T, Wang K, Cao Y et al (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kapeller I, Milman N, Yaffe N, Shlomai J (2011) Interactions of a replication initiator with histone h1-like proteins remodel the condensed mitochondrial genome. J Biol Chem 286:40566–40574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufman BA, Durisic N, Mativetsky JM et al (2007) The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 18:3225–3236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaushik S, Arias E, Kwon H et al (2012) Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep 13:258–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kazachkova N, Ramos A, Santos C, Lima M (2013) Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Aging Dis 4:337–350

    PubMed Central  PubMed  Google Scholar 

  • Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13:659–671

    CAS  PubMed  Google Scholar 

  • Kennedy SR, Salk JJ, Schmitt MW, Loeb LA (2013) Ultra-sensitive sequencing reveals an age-related Increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9(9):e1003794. doi:10.1371/journal.pgen.1003794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kienhöfer J, Häussler DF, Ruckelshausen F et al (2009) Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB J 23:2034–2044

    PubMed Central  PubMed  Google Scholar 

  • Kim I, Lemasters JJ (2011) Mitophagy selectively degrades individual damaged mitochondria after photoirradiation. Antioxid Redox Signal 14:1919–1928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim GJ, Chandrasekaran K, Morgan WF (2006) Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review. Mutagenesis 21:361–367

    CAS  PubMed  Google Scholar 

  • Kissova I, Deffieu M, Manon S, Camougrand N (2004) Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279:39068–39074

    CAS  PubMed  Google Scholar 

  • Klionsky DJ (2014) Citing recent declines in the discovery of new ATG genes, some scientists now suggest that the end of autophagy research may be within sight. Autophagy 10:715–716

    PubMed  Google Scholar 

  • Klionsky DJ, Schulman BA (2014) Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21:336–345

    CAS  PubMed  Google Scholar 

  • Klionsky DJ, Abdalla FC, Abeliovich H et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kotiadis VN, Duchen MR, Osellame LD (2014) Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 1840:1254–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kraytsberg Y, Kudryavtseva E, McKee AC et al (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    CAS  PubMed  Google Scholar 

  • Kraytsberg Y, Simon DK, Turnbull DM, Khrapko K (2009) Do mtDNA deletions drive premature aging in mtDNA mutator mice? Aging Cell 4:502–506

    Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    CAS  PubMed  Google Scholar 

  • Kukat C, Larsson NG (2013) mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol 23:457–463

    CAS  PubMed  Google Scholar 

  • Kukat C, Wurm CA, Spahr H et al (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci USA 108:13534–13539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kutsyi MP, Gouliaeva NA, Kuznetsova EA, Gaziev AI (2005) DNA-binding proteins of mammalian mitochondria. Mitochondrion 5:35–44

    CAS  PubMed  Google Scholar 

  • Lagouge M, Larsson NG (2013) The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med 273:529–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    CAS  PubMed  Google Scholar 

  • Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123:980–989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanza IR, Nair KS (2010) Mitochondrial function as a determinant of life span. Eur J Physiol 459:277–289

    CAS  Google Scholar 

  • Lapointe J, Hekimi S (2010) When a theory of aging ages badly. Cell Mol Life Sci 67:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lapucci A, Pittelli M, Rapizzi E et al (2011) Poly(ADP-ribose) polymerase-1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription. Mol Pharmacol 79:932–940

    CAS  PubMed  Google Scholar 

  • Larsson NG (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706

    CAS  PubMed  Google Scholar 

  • Lee HC, Wei YH (2005) Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37:822–834

    CAS  PubMed  Google Scholar 

  • Lee HC, Wei YH (2012) Mitochondria and aging. Adv Exp Med Biol 942:311–327

    CAS  PubMed  Google Scholar 

  • Lee IH, Cao L, Mostoslavsky R et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105:3374–3379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5

    CAS  PubMed  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    CAS  PubMed  Google Scholar 

  • Lim KS, Jeyaseelan K, Whiteman M et al (2005) Oxidative damage in mitochondrial DNA is not extensive. Ann N Y Acad Sci 1042:210–220

    CAS  PubMed  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    CAS  PubMed  Google Scholar 

  • Lionaki E, Markaki M, Tavernarakis N (2013) Autophagy and ageing: insights from invertebrate model organisms. Ageing Res Rev 12:413–428

    CAS  PubMed  Google Scholar 

  • Lipinski MM, Zheng B, Lu T et al (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 107:14164–14169

    CAS  PubMed Central  PubMed  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    PubMed Central  PubMed  Google Scholar 

  • Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26:417–432

    PubMed Central  PubMed  Google Scholar 

  • Ma YS, Wu SB, Lee WY et al (2009) Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochim Biophys Acta 1790:1021–1029

    CAS  PubMed  Google Scholar 

  • Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12:842–846

    CAS  PubMed  Google Scholar 

  • Margulis L (1992) Biodiversity: molecular biological domains, symbiosis and kingdom origins. Biosystems 27(1):39–51

  • Marín-García J, Akhmedov AT, Moe GW (2013) Mitochondria in heart failure: the emerging role of mitochondrial dynamics. Heart Fail Rev 18:439–456

    PubMed  Google Scholar 

  • Martin LJ (2012) Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci 107:355–415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marzetti E, Csiszar A, Dutta D et al (2013) Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 305:H459–H476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masuyama M, Iida R, Takatsuka H et al (2005) Quantitative change in mitochondrial DNA content in various mouse tissues during aging. Biochim Biophys Acta 1723:302–308

    CAS  PubMed  Google Scholar 

  • Matsushima Y, Kaguni LS (2012) Matrix proteases in mitochondrial DNA function. Biochim Biophys Acta 1819:1080–1087

    CAS  PubMed Central  PubMed  Google Scholar 

  • McInnes J (2013) Insights on altered mitochondrial function and dynamics in the pathogenesis of neurodegeneration. Transl Neurodegener 2(1):12. doi:10.1186/2047-9158-2-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKinney EA, Oliveira MT (2013) Replicating animal mitochondrial DNA. Genet Mol Biol 36(3):308–315

  • Melser S, Chatelain EH, Lavie J et al (2013) Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 17:719–730

    CAS  PubMed  Google Scholar 

  • Menshikova EV, Ritov VB, Fairfull L et al (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A 61:534–540

    Google Scholar 

  • Merksamer PI, Liu Y, He W et al (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 5:144–150

    CAS  Google Scholar 

  • Meyer JN, Bess AS (2012) Involvement of autophagy and mitochondrial dynamics in determining the fate and effects of irreparable mitochondrial DNA damage. Autophagy 8:822–1823

    Google Scholar 

  • Miller FJ, Rosenfeldt FL, Zhang C et al (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31(11):e61

    PubMed Central  PubMed  Google Scholar 

  • Mitra S, Izumi T, Boldogh I et al (2007) Intracellular trafficking and regulation of mammalian AP-endonuclease 1 (APE1), an essential DNA repair protein. DNA Repair (Amst) 6:461–469

    CAS  Google Scholar 

  • Miyaki M, Yatagai K, Ono T (1977) Strand breaks of mammalian mitochondrial DNA induced by carcinogens. Chem Biol Interact 17:321–329

    CAS  PubMed  Google Scholar 

  • Miyamoto Y, Kitamura N, Nakamura Y et al (2011) Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control. PLoS One 6(1):e16054. doi:10.1371/journal.pone.0016054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montier LC, Deng JJ, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J.Genet Genomics 36:125–131

    CAS  Google Scholar 

  • Muftuoglu M, Mori MP, de Souza-Pinto NC (2014) Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion. doi:10.1016/j.mito.2014.03.007

    PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MP, Holmgren A, Larsson NG et al (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–365

    CAS  PubMed  Google Scholar 

  • Nakada K, Sato A, Hayashi J (2009) Mitochondrial functional complementation in mitochondrial DNA-based diseases. Int J Biochem Cell Biol 41:1907–1913

    CAS  PubMed  Google Scholar 

  • Narendra DP, Youle RJ (2014) Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal 14:1929–1938

    Google Scholar 

  • Narendra DP, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4:a011338

    PubMed  Google Scholar 

  • Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    CAS  PubMed  Google Scholar 

  • Okamoto K, Kondo-Okamoto N (2012) Mitochondria and autophagy: critical interplay between the two homeostats. Biochim Biophys Acta 1820:595–600

    CAS  PubMed  Google Scholar 

  • Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97

    CAS  PubMed  Google Scholar 

  • Orvedahl A, Sumpter R Jr, Xiao G et al (2011) Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480:113–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Otera H, Ishihara N, Mihara K (2013) New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 1833:1256–1268

    CAS  PubMed  Google Scholar 

  • Owusu-Ansah E, Yavari A, Mandal S, Banerjee U (2008) Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet 40:356–361

    CAS  PubMed  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B et al (2008a) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B et al (2008b) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol. doi:10.1016/j.exger.01.021

    PubMed  Google Scholar 

  • Pani G, Galeotti T (2011) Role of MnSOD and p66shc in mitochondrial response to p53. Antioxid Redox Signal 15:1715–1727

    CAS  PubMed  Google Scholar 

  • Pankotai E, Lacza Z, Muranyi M, Szabo C (2009) Intra-mitochondrial poly(ADP-ribosyl)ation: potential role for alpha-ketoglutarate dehydrogenase. Mitochondrion 9:159–164

    CAS  PubMed  Google Scholar 

  • Parrish J, Li L, Klotz K et al (2001) Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412:90–94

    CAS  PubMed  Google Scholar 

  • Payne BI, Wilson IJ, Wai-Man PY et al (2013) Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet 22:384–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez VI, Bokov A, Van Remmen H et al (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790:1005–1014

    PubMed Central  PubMed  Google Scholar 

  • Peterson CM, Johannsen DL, Ravussin E (2012) Skeletal muscle mitochondria and aging: a review. J Aging Res 2012:194821. doi:10.1155/2012/194821

    PubMed Central  PubMed  Google Scholar 

  • Poovathingal SK, Gruber J, Lakshmanan L et al (2012) Is mitochondrial DNA turnover slower than commonly assumed? Biogerontology 13:557–564

    CAS  PubMed  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raimundo N (2014) Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med. doi:10.1016/j.molmed.2014.01.005

    PubMed  Google Scholar 

  • Ranieri M, Brajkovic S, Riboldi G et al (2013) Mitochondrial fusion proteins and human diseases. Neurol Res Int 2013:293893. doi:10.1155/2013/293893

    PubMed Central  PubMed  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    CAS  PubMed  Google Scholar 

  • Reyes A, He J, Mao CC et al (2011) Actin and myosin contribute to mammalian mitochondrial DNA maintenance. Nucleic Acids Res 39:5098–5108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reznick RM, Zong H, Li J et al (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5:151–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51:327–336

    CAS  PubMed  Google Scholar 

  • Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418

    CAS  PubMed  Google Scholar 

  • Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA 106:8665–8670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross JM, Stewart JB, Hagström E et al (2013) Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501:412–415

    CAS  PubMed  Google Scholar 

  • Rossi MN, Carbone M, Mostocotto C et al (2009) Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J Biol Chem 284:31616–31624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossignol R, Faustin B, Rocher C et al (2003) Mitochondrial threshold effects. Biochem J 370:751–762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and Aging. Cell 146:682–695

    CAS  PubMed  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV et al (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Safdar A, Bourgeois JM, Ogborn DI et al (2011) Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci USA 108:4135–4140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato A, Kono T, Nakada K et al (2005) Gene therapy for progeny of mito-mice carrying pathogenic mtDNA by nuclear transplantation. Proc Natl Acad Sci USA 102:16765–16770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scarffe LA, Stevens DA, Dawson VL, Dawson TM (2014) Parkin and PINK1: much more than mitophagy. Trends Neurosci 37:315–324

    CAS  PubMed  Google Scholar 

  • Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    CAS  PubMed  Google Scholar 

  • Schiavi A, Ventura N (2014) The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol. doi:10.1016/j.exger.2014.02.015

    Google Scholar 

  • Schroeder EA, Raimundo N, Shadel GS (2013) Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab 17:954–964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo AY, Joseph AM, Dutta D et al (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    CAS  PubMed  Google Scholar 

  • Shokolenko I, Venediktova N, Bochkareva A et al (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37:2539–2548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Short KR, Bigelow ML, Kahl J et al (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102:5618–5623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skulachev MV, Antonenko YN, Anisimov VN et al (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets 12:800–826

    CAS  PubMed  Google Scholar 

  • Song S, Pursell ZF, Copeland WC et al (2005) DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc Natl Acad Sci USA 102:4990–4995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Springer W, Kahle PJ (2011) Regulation of PINK1-Parkin-mediated mitophagy. Autophagy 7:266–278

    CAS  PubMed  Google Scholar 

  • Stetler RA, Leak RK, Gao Y, Chen J (2013) The dynamics of the mitochondrial organelle as a potential therapeutic target. J Cereb Blood Flow Metab 33:22–32

    Google Scholar 

  • Stuart JA, Bourque BM, de Souza-Pinto NC, Bohr VA (2005) No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic Biol Med 38:737–745

    CAS  PubMed  Google Scholar 

  • Suen D, Narendra DP, Tanaka A et al (2010) Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci USA 107:11835–11840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szczesny B, Tann AW, Mitra S (2010) Age- and tissue-specific changes in mitochondrial and nuclear DNA base excision repair activity in mice: susceptibility of skeletal muscles to oxidative injury. Mech Ageing Dev 131:330–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tao R, Coleman MC, Pennington JD et al (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40:893–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terman A (1995) The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes. Gerontology 41(2):319–326

    PubMed  Google Scholar 

  • Terman A, Kurz T, Navratil M et al (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial–lysosomal axis theory of aging. Antioxid Redox Signal 12:503–535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokarz P, Kaarniranta K, Blasiak J (2013) Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 14:461–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tranah GJ (2011) Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res Rev 10:238–252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature aging in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    CAS  PubMed  Google Scholar 

  • Tseng AH, Shieh SS, Wang DL (2013) SIRT3 deacetylates Foxo3 to protect mitochondria against oxidative damage. Free Radic Biol Med 63:222–234

    CAS  PubMed  Google Scholar 

  • Van Laar VS, Berman SB (2013) The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson’s disease. Neurobiol Dis 51:43–55

    PubMed Central  PubMed  Google Scholar 

  • Van Remmen H, Ikeno Y, Hamilton M et al (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37

    PubMed  Google Scholar 

  • Veal E, Day A (2011) Hydrogen peroxide as a signaling molecule. Antioxid Redox Signal 15:147–151

    CAS  PubMed  Google Scholar 

  • Vermulst M, Bielas JH, Kujoth GC et al (2007) Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39:540–543

    CAS  PubMed  Google Scholar 

  • Vermulst M, Wanagat J, Kujoth GC et al (2008) DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40:392–394

    CAS  PubMed  Google Scholar 

  • Vijg J, Suh Y (2013) Genome Instability and Aging. Annu Rev Physiol 75:645–668

    CAS  PubMed  Google Scholar 

  • Vincow ES, Merrihew G, Thomas RE et al (2013) The PINK1–Parkin pathway promotes both mitophagyand selective respiratory chain turnover in vivo. Proc Natl Acad Sci USA 110:6400–6405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107:378–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Kim NS, Haince JF et al (2011) Poly(ADP-ribose) (PAR) binding to apoptosis- inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4(167):ra20. doi:10.1126/scisignal.2000902

    PubMed Central  PubMed  Google Scholar 

  • Wang CH, Wu SB, Wu YT, Wei YH (2013) Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood) 238:450–460

    Google Scholar 

  • Weichhart T (2012) Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life. Methods Mol Biol 821:1–14

    CAS  PubMed  Google Scholar 

  • Wenz T (2013) Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 13:134–142

    CAS  PubMed  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    CAS  PubMed  Google Scholar 

  • Wu S, Zhou F, Zhang Z, Xing D (2011) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 278:941–954

    CAS  PubMed  Google Scholar 

  • Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    CAS  PubMed  Google Scholar 

  • Zanin MB, Donohue JM, Everitt BA (2010) Evidence that core histone H3 is targeted to the mitochondria in Brassica oleracea. Cell Biol Int 34:997–1003

    CAS  PubMed  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    CAS  PubMed  Google Scholar 

  • Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14:959–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Wu Y, Zhang P et al (2012) Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience 205:10–17

    CAS  PubMed  Google Scholar 

  • Zhao J, Lendahl U, Nister M (2013) Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates. Cell Mol Life Sci 70:951–976

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Margaret Ilina for her assistance with manuscript preparation. This work was partly supported by the Basic Sciences to Medicine program of the Presidium of the Russian Academy of Sciences (grant FSM-G12) and by the Institute of Theoretical and Experimental Biophysics RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Podlutsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaziev, A.I., Abdullaev, S. & Podlutsky, A. Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology 15, 417–438 (2014). https://doi.org/10.1007/s10522-014-9515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-014-9515-2

Keywords

Navigation