Skip to main content

Advertisement

Log in

Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways. As the proliferative potential of myoblasts decreased dramatically with passage number, a number of cellular functions were altered: the capacity of myoblasts to fuse and differentiate into myotubes was reduced, and metabolic processes in myotubes such as glucose uptake, glycogen synthesis, glucose oxidation and fatty acid β-oxidation became gradually impaired. Upon insulin stimulation, glucose uptake and glycogen synthesis increased but as the cellular proliferative capacity became gradually exhausted, the response dropped concomitantly. Palmitic acid incorporation into lipids in myotubes decreased with passage number and could be explained by reduced incorporation into diacyl- and triacylglycerols. The levels of long-chain acyl-CoA esters decreased with increased passage number. Late-passage, non-proliferating, myoblast cultures showed strong senescence-associated β-galactosidase activity indicating that the observed metabolic defects accompany the induction of a senescent state. The main function of SCs is regeneration and skeletal muscle-build up. Thus, the metabolic defects observed during aging of SC-derived myotubes could have a role in sarcopenia, the gradual age-related loss of muscle mass and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASM:

Acid soluble metabolites

BSA:

Bovine serum albumin

CE:

Cholesteryl esters

CPT:

Carnitine palmitoyltransferase

DAG:

Diacylglycerol

FCS:

Fetal calf serum

FFA:

Free fatty acids

GIR:

Glucose infusion rates

HI:

High insulin concentration

HPLC:

High-pressure liquid chromatography

LCA-CoA:

Long-chain acyl-CoA esters

PA:

Palmitic acid

PL:

Phospholipids

ROS:

Reactive oxygen species

SA-βGal:

Senescence-associated beta-galactosidase

SC:

Satellite cells

TAG:

Triacylglycerol

TCA:

Tricarboxylic acid

References

  • Akima H, Kano Y, Enomoto Y, Ishizu M, Okada M, Oishi Y, Katsuta S, Kuno S (2001) Muscle function in 164 men and women aged 20–84 yr. Med Sci Sports Exerc 33(2):220–226

    PubMed  CAS  Google Scholar 

  • Ball AJ, Levine F (2005) Telomere-independent cellular senescence in human fetal cardiomyocytes. Aging Cell 4(1):21–30

    Article  PubMed  CAS  Google Scholar 

  • Beccafico S, Puglielli C, Pietrangelo T, Bellomo R, Fanò G, Fulle S (2007) Age-dependent effects on functional aspects in human satellite cells. Ann N Y Acad Sci 1100:345–352

    Article  PubMed  CAS  Google Scholar 

  • Bigot A, Jacquemin V, Debacq-Chainiaux F, Butler-Browne GS, Toussaint O, Furling D, Mouly V (2008) Replicative aging down-regulates the myogenic regulatory factors in human myoblasts. Biol Cell 100(3):189–199

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R (1975) Regeneration of single skeletal muscle fibres in vitro. Anat Rec 182:215–236

    Article  PubMed  CAS  Google Scholar 

  • Bortoli S, Renault V, Eveno E, Auffray C, Butler-Browne G, Piétu G (2003) Gene expression profiling of human satellite cells during muscular aging using cDNA arrays. Gene 321:145–154

    Article  PubMed  CAS  Google Scholar 

  • Bortoli S, Renault V, Mariage-Samson R, Eveno E, Auffray C, Butler-Browne G, Piétu G (2005) Modifications in the myogenic program induced by in vivo and in vitro aging. Gene 347(1):65–72

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carlson ME, Conboy IM (2007) Loss of stem cell regenerative capacity within aged niches. Aging Cell 6(3):371–382

    Article  PubMed  CAS  Google Scholar 

  • Carlson ME, Suetta C, Conboy MJ, Aagaard P, Mackey A, Kjaer M, Conboy I (2009) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1(8–9):381–391

    Article  PubMed  CAS  Google Scholar 

  • Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238

    Article  PubMed  Google Scholar 

  • Conley KE, Amara CE, Jubrias SA, Marcinek DJ (2007) Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo. Exp Physiol 92(2):333–339

    Article  PubMed  CAS  Google Scholar 

  • Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed  Google Scholar 

  • Corpeleijn E, Hessvik NP, Bakke SS, Levin K, Blaak EE, Thoresen GH, Gaster M, Rustan AC (2010) Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids. Am J Physiol Endocrinol Metab 299(1):E14–E22

    Article  PubMed  CAS  Google Scholar 

  • Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4(12):1798–1806

    Article  PubMed  CAS  Google Scholar 

  • Decary S, Mouly V, Hamida CB, Sautet A, Barbet JP, Butler-Browne GS (1997) Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther 8(12):1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Degens H (2007) Age-related skeletal muscle dysfunction: causes and mechanisms. J Musculoskelet Neuronal Interact 7(3):246–252

    PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Roskelley C, Scott G, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92(20):9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ, Kraegen EW, Cooney GJ (2000) Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol Endocrinol Metab 279(3):E554–E560

    PubMed  CAS  Google Scholar 

  • Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 22(5):654–667

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Frederiksen CM, Højlund K, Hansen L, Oakeley EJ, Hemmings B, Abdallah BM, Brusgaard K, Beck-Nielsen H, Gaster M (2008) Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes. Diabetologia 51(11):2068–2077

    Article  PubMed  CAS  Google Scholar 

  • Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16(5):238–246

    Article  PubMed  CAS  Google Scholar 

  • Frontera WR, Reid KF, Phillips EM, Krivickas LS, Hughes VA, Roubenoff R, Fielding RA (2008) Muscle fiber size and function in elderly humans: a longitudinal study. J Appl Physiol 105(2):637–642

    Article  PubMed  Google Scholar 

  • Fulle S, Di Donna S, Puglielli C, Pietrangelo T, Beccafico S, Bellomo R, Protasi F, Fanò G (2005) Age-dependent imbalance of the antioxidative system in human satellite cells. Exp Gerontol 40(3):189–197

    Article  PubMed  CAS  Google Scholar 

  • Gaster M (2007a) Insulin resistance and the mitochondrial link. Lessons from cultured human myotubes. Biochim Biophys Acta 1772(7):755–765

    PubMed  CAS  Google Scholar 

  • Gaster M (2007b) Metabolic flexibility is conserved in diabetic myotubes. J Lipid Res 48:207–217

    Article  PubMed  CAS  Google Scholar 

  • Gaster M (2009a) Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects. Biochem Biophys Res Commun 382(4):766–770

    Article  PubMed  CAS  Google Scholar 

  • Gaster M (2009b) Reduced TCA flux in diabetic myotubes: a governing influence on the diabetic phenotype? Biochem Biophys Res Commun 387(4):651–655

    Article  PubMed  CAS  Google Scholar 

  • Gaster M (2011) Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes. Biochem Biophys Res Commun 404:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Gaster M, Beck-Nielsen H (2004) The reduced insulin mediated glucose oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes. Biochim Biophys Acta 1690:85–91

    PubMed  CAS  Google Scholar 

  • Gaster M, Beck-Nielsen H (2006) Triacylglycerol accumulation is not primarily affected in myotubes established from type 2 diabetic subjects. Biochim Biophys Acta 1761(1):100–110

    PubMed  CAS  Google Scholar 

  • Gaster M, Kristensen SR, Beck-Nielsen H, Schrøder HD (2001a) A cellular model system of differentiated human myotubes. APMIS 109:735–744

    Article  PubMed  CAS  Google Scholar 

  • Gaster M, Beck-Nielsen H, Schrøder HD (2001b) Proliferation conditions for human satellite cells. The fractional content of satellite cells. APMIS 109(11):726–734

    Article  PubMed  CAS  Google Scholar 

  • Gaster M, Schroder HD, Handberg A, Beck-Nielsen H (2001c) The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure. Biochim Biophys Acta 1537:211–221

    PubMed  CAS  Google Scholar 

  • Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H (2002) The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes 51:921–927

    Article  PubMed  CAS  Google Scholar 

  • Gaster M, Rustan AC, Aas V, Beck-Nielsen H (2004) Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes. Diabetes 53:542–548

    Article  PubMed  CAS  Google Scholar 

  • Gaster M, Rustan AC, Beck-Nielsen H (2005) Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes. Diabetes 54(3):648–656

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S, Korczack LB (1981) Status of mitochondria in living human fibroblasts during growth and senescence in vitro: use of the laser dye rhodamine 123. J Cell Biol 91(2Pt1):392–398

    Article  PubMed  CAS  Google Scholar 

  • Gopinath SD, Rando TA (2008) Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7(4):590–598

    Article  PubMed  CAS  Google Scholar 

  • Guillet C, Boirie Y (2005) Insulin resistance: a contributing factor to age-related muscle mass loss? Diabetes Metab 31(Supp 1):5S20–5S26

    Article  PubMed  CAS  Google Scholar 

  • Hampel B, Wagner M, Teis D, Zwerschke W, Huber LA, Jansen-Dürr P (2005) Apoptosis resistance of senescent human fibroblasts is correlated with the absence of nuclear IGFBP-3. Aging Cell 4(6):325–330

    Article  PubMed  CAS  Google Scholar 

  • Hansen L, Gaster M, Oakeley EJ, Brusgaard K, Damsgaard Nielsen EM, Beck-Nielsen H, Pedersen O, Hemmings BA (2004) Expression profiling of insulin action in human myotubes: induction of inflammatory and pro-angiogenic pathways in relationship with glycogen synthesis and type 2 diabetes. Biochem Biophys Res Commun 323(2):685–695

    Article  PubMed  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91(2):534–551

    PubMed  CAS  Google Scholar 

  • Jejurikar SS, Henkelman EA, Cederna PS, Marcelo CL, Urbanchek MG, Kuzon WM Jr (2006) Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis. Exp Gerontol 41(9):828–836

    Article  PubMed  CAS  Google Scholar 

  • Johnson MA, Sideri G, Weightman D, Appleton D (1973) A comparison of fibre size, fibre type constitution and spatial fibre type distribution in normal human muscle and in muscle from cases of spinal muscular atrophy and from other neuromuscular disorders. J Neurol Sci 20(4):345–361

    Article  PubMed  CAS  Google Scholar 

  • Ju Z, Choudhury AR, Rudolph KL (2007) A dual role of p21 in stem cell aging. Ann N Y Acad Sci 1100:333–344

    Article  PubMed  CAS  Google Scholar 

  • Just M, Faergeman NJ, Knudsen J, Beck-Nielsen H, Gaster M (2006) Long-chain Acyl-CoA is not primarily increased in myotubes established from type 2 diabetic subjects. Biochim Biophys Acta 1762(7):666–672

    PubMed  CAS  Google Scholar 

  • Kadi F, Charifi N, Denis C, Lexell J (2004) Satellite cells and myonuclei in young and elderly women amd men. Muscle Nerve 29:120–127

    Article  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65(1):177–185

    PubMed  CAS  Google Scholar 

  • Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98(21):12072–12077

    Article  PubMed  CAS  Google Scholar 

  • Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9(2):81–94

    Article  PubMed  CAS  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  PubMed  CAS  Google Scholar 

  • Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB (2010) Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 21(4):543–559

    Article  PubMed  CAS  Google Scholar 

  • Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19(6):628–633

    Article  PubMed  CAS  Google Scholar 

  • Machida S, Booth FW (2004) Increased nuclear proteins in muscle satellite cells in aged animals as compared to young growing animals. Exp Gerontol 39(10):1521–1525

    Article  PubMed  CAS  Google Scholar 

  • Minet AD, Gaster M (2010) ATP synthesis is impaired in isolated mitochondria from myotubes established from type 2 diabetic subjects. Biochem Biophys Res Commun 402(1):70–74

    Article  PubMed  CAS  Google Scholar 

  • Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2):S9–S15

    Article  PubMed  CAS  Google Scholar 

  • Nehlin JO, Barington T (2009) Strategies for future histocompatible stem cell therapy. Biogerontology 10(4):339–376

    Article  PubMed  CAS  Google Scholar 

  • O’Connor MS, Carlson ME, Conboy IM (2009) Differentiation rather than aging of muscle stem cells abolishes their telomerase activity. Biotechnol Prog 25(4):1130–1137

    Article  PubMed  Google Scholar 

  • Ortenblad N, Mogensen M, Petersen I, Hojlund K, Levin K, Sahlin K, Beck-Nielsen H, Gaster M (2005) Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys Acta 1741:206–214

    PubMed  CAS  Google Scholar 

  • Passonneau JV, Lowry OH (1993) Enzymatic analysis: a practical guide. Humana Press, Totowa

    Google Scholar 

  • Petersen KF, Shulman GI (2006) Etiology of insulin resistance. Am J Med 119(5 Suppl 1):S10–S16

    Article  PubMed  Google Scholar 

  • Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300(5622):1140–1142

    Article  PubMed  CAS  Google Scholar 

  • Pietrangelo T, Puglielli C, Mancinelli R, Beccafico S, Fanò G, Fulle S (2009) Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation. Exp Gerontol 44(8):523–531

    Article  PubMed  CAS  Google Scholar 

  • Ponsot E, Lexell J, Kadi F (2008) Skeletal muscle telomere length is not impaired in healthy physically active old women and men. Muscle Nerve 37(4):467–472

    Article  PubMed  CAS  Google Scholar 

  • Ramirez RD, Morales CP, Herbert B-S, Rohde JM, Passons C, Shay JW, Wright WE (2001) Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 15:398–403

    Article  PubMed  CAS  Google Scholar 

  • Renault V, Rolland E, Thornell LE, Mouly V, Butler-Browne G (2002a) Distribution of satellite cells in the human vastus lateralis muscle during aging. Exp Gerontol 37(12):1513–1514

    Article  PubMed  CAS  Google Scholar 

  • Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V (2002b) Regenerative potential of human skeletal muscle during aging. Aging Cell 1(2):132–139

    Article  PubMed  CAS  Google Scholar 

  • Roberts SB, Rosenberg I (2006) Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev 86(2):651–667

    Article  PubMed  CAS  Google Scholar 

  • Roth SM, Martel GF, Ivey FM, Lemmer JT, Metter EJ, Hurley BF, Rogers MA (2000) Skeletal muscle satellite cell populations in healthy young and older men and women. Anat Rec 260(4):351–358

    Article  PubMed  CAS  Google Scholar 

  • Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, Brack AS (2010) Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6(2):117–129

    Article  PubMed  CAS  Google Scholar 

  • Skrede S, Bremer J, Berge RK, Rustan AC (1994) Stimulation of fatty acid oxidation by a 3-thia fatty acid reduces triacylglycerol secretion in cultured rat hepatocytes. J Lipid Res 35:1395–1404

    PubMed  CAS  Google Scholar 

  • Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Tucker MZ, Turcotte LP (2002) Impaired fatty acid oxidation in muscle of aging rats perfused under basal conditions. Am J Physiol Endocrinol Metab 282:E1102–E1109

    PubMed  CAS  Google Scholar 

  • Tucker MZ, Turcotte LP (2003) Aging is associated with elevated muscle triglyceride content and increased insulin-stimulated fatty acid uptake. Am J Physiol Endocrinol Metab 285(4):E827–E835

    PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292:151–157

    Article  Google Scholar 

  • Watt MJ (2009) Storing up trouble: does accumulation of intramyocellular triglyceride protect skeletal muscle from insulin resistance? Clin Exp Pharmacol Physiol 36(1):5–11

    Article  PubMed  CAS  Google Scholar 

  • Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA (2003a) Gene expression profile of aging in human muscle. Physiol Genomics 14(2):149–159

    PubMed  CAS  Google Scholar 

  • Welle S, Bhatt K, Shah B, Needler N, Delehanty JM, Thornton CA (2003b) Reduced amount of mitochondrial DNA in aged human muscle. J Appl Physiol 94(4):1479–1484

    PubMed  CAS  Google Scholar 

  • Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B, Thornton CA (2004) Skeletal muscle gene expression profiles in 20–29 year old and 65–71 year old women. Exp Gerontol 39(3):369–377

    Article  PubMed  CAS  Google Scholar 

  • Wensaas AJ, Rustan AC, Just M, Berge RK, Drevon CA, Gaster M (2009) Fatty acid incubation of myotubes from humans with type 2 diabetes leads to enhanced release of beta-oxidation products because of impaired fatty acid oxidation: effects of tetradecylthioacetic acid and eicosapentaenoic acid. Diabetes 58(3):527–535

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277(52):50230–50236

    Article  PubMed  CAS  Google Scholar 

  • Zwerschke W, Mazurek S, Stockl P, Hutter E, Eigenbrodt E, Jansen-Durr P (2003) Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J 376(Pt2):403–411

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Irene Lynfort and Karin Dyrgaard provided excellent technical assistance. Kurt Højlund and Klaus Levin are thanked for muscle biopsies. The present work was supported by the Lundbeck Foundation, the University of Southern Denmark and Odense University Hospital (J.O.N.). The Danish Medical Research Council and the Novo Nordisk Foundation are thanked for financial support (M.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan O. Nehlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nehlin, J.O., Just, M., Rustan, A.C. et al. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 12, 349–365 (2011). https://doi.org/10.1007/s10522-011-9336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9336-5

Keywords

Navigation