Skip to main content

Advertisement

Log in

Energetic efficiency under stress underlies positive genetic correlations between longevity and other fitness traits in natural populations

  • Opinion article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Evolutionary relationships among fitness traits are considered in terms of the near-to-universal scenario of stressful environments leading to a resource-deficient and hence energy-deficient world. Fitness approximates to energetic (and metabolic) efficiency under this environmental model. When fitness is high, stress resistance (reducible to oxidative-stress resistance) and metabolic stability are maximal, and energy expenditure is minimal. Rapid development should then be favored followed by a long lifespan and high adult survival. Positive associations among diverse fitness or life-history traits are expected, controlled by stress-resistant ‘good genotypes’. Heterozygotes tend to show higher energetic efficiency and hence higher fitness than do corresponding homozygotes under extreme environments, and to give parallel associations among life-history traits. Energy budgets under abiotic environments are pivotal for integrative evolutionary studies of life histories in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arking R (1998) Biology of aging: observations and principles, 2nd edn. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Arking R, Buck S, Hwangbo DS, Lane M (2002) Metabolic alterations and shifts in energy allocations are corequisites for the expression of extended longevity genes in Drosophila. Ann NY Acad Sci 959:251–262

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2004) Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production – DNA damage mechanism? Biol Rev 79:235–251

    Article  PubMed  Google Scholar 

  • Criscuolo F, Gonzalez-Barroso M del M, Bouillard F, Ricquier D, Miroux B, Sorci G (2005) Mitochondrial uncoupling proteins: new perspectives for evolutionary ecologists. Am Nat 166:686–699

  • Demetrius L (2005) Of mice and men. EMBO Rep 6:S39–S44

    Article  PubMed  CAS  Google Scholar 

  • Eldredge N (1999) The pattern of evolution. W H Freeman, New York

    Google Scholar 

  • Falkowski PG (2006) Tracing oxygen’s imprint on Earth’s metabolic evolution. Science 311:1724–1725

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Hekimi S, Guarente L (2003) Genetics and the specificity of the aging process. Science 299:1351–1354

    Article  PubMed  CAS  Google Scholar 

  • Hilliker AJ, Duyf B, Evans D, Phillips JP (1992) Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc Natl Acad Sci USA 89:4243–4247

    Article  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford Univ Press, New York

    Google Scholar 

  • Koehn RK, Bayne BL (1989) Towards a physiological and genetical understanding of the stress response. Biol J Linn Soc 37:151–171

    Article  Google Scholar 

  • Kruuk LEB (2004) Estimating genetic parameters in natural populations using the animal model. Phil Trans Roy Soc Lond B359:873–890

    Article  Google Scholar 

  • Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavaré S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci USA 101:7663–7668

    Article  PubMed  CAS  Google Scholar 

  • Margulis L, Sagan D (2002) Acquiring genomes: a theory of the origin of species. Basic Books, New York

    Google Scholar 

  • Mauck RA, Huntingdon CE, Grubb TC Jr (2004) Age-specific reproductive success: evidence for the selection hypothesis. Evolution 58:880–885

    PubMed  CAS  Google Scholar 

  • Mitton JB (1993) Enzyme heterozygosity, metabolism and developmental variability. Genetica 89:47–63

    Article  CAS  Google Scholar 

  • Miyazaki S, Nevo E, Grishkan I, Idleman U, Weinberg D, Bohnert HJ (2003) Oxidative stress responses in yeast strains, Saccharomyces cerevisiae, from ‘Evolution Canyon’, Israel. Monatschefte für Chemie 134:1465–1480

    CAS  Google Scholar 

  • Morowitz HJ (1992) Beginnings of cellular life: metabolism recaptures biogenesis. Yale Univ Press, New Haven

    Google Scholar 

  • Myrand B, Tremblay R, Sévigny J-M (2002) Selection against blue mussels (Mytilus edulis L) homozygotes under various stressful conditions. J Hered 93:238–248

    Article  PubMed  CAS  Google Scholar 

  • Nevo E (2001) Evolution of genome–phenome diversity under environmental stress. Proc Natl Acad Sci USA 98:6233–6240

    Article  PubMed  CAS  Google Scholar 

  • Niewiarowski PH (2001) Energy budgets, growth rates, and thermal constraints: toward an integrative approach to the study of life-history variation. Am Nat 157:421–433

    Article  PubMed  CAS  Google Scholar 

  • Olshansky SJ, Rattan SIS (2005) At the heart of aging: is it metabolic rate or stability? Biogerontology 6:291–295

    Article  PubMed  Google Scholar 

  • Paolisso G, Tagliamonte MR, Risso MR, Manzella D, Gambardella A, Varrichio M (1998) Oxidative stress and advancing age: results in healthy centenarians. J␣Am Geriat Soc 46:833–838

    PubMed  CAS  Google Scholar 

  • Parsons PA (1971) Extreme-environment heterosis and genetic loads. Heredity 26:479–483

    PubMed  CAS  Google Scholar 

  • Parsons PA (1992) Evolutionary adaptation and stress: the fitness gradient. Evol Biol 26:191–223

    Google Scholar 

  • Parsons PA (1995) Inherited stress resistance and longevity: a stress theory of ageing. Heredity 75:216–221

    PubMed  Google Scholar 

  • Parsons PA (1996) Rapid development and a long life: an association expected under a stress theory of aging. Experientia 53:643–646

    Article  Google Scholar 

  • Parsons PA (1998) Behavioral variability and limits to evolutionary adaptation under stress. Adv Study Behav 27:155–180

    Article  Google Scholar 

  • Parsons PA (2002) Life span: does the limit to survival depend upon metabolic efficiency under stress? Biogeronotology 3:233–241

    Article  CAS  Google Scholar 

  • Parsons PA (2004) From energy efficiency under stress to rapid development and a long life in natural populations. Biogerontology 5:201–210

    Article  PubMed  Google Scholar 

  • Parsons PA (2005) Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev 80:589–610

    Article  PubMed  Google Scholar 

  • Raymond J, Segre D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–1767

    Article  PubMed  CAS  Google Scholar 

  • Rosewell J, Shorrocks B (1987) The implication of survival rates in natural populations of Drosophila: capture–recapture experiments on domestic species. Biol J Linn Soc 32:373–384

    Google Scholar 

  • Torres JL (1991) Natual selection and thermodynamic optimality. Il Nuovo Cimento 13:177–185

    Article  Google Scholar 

  • Van Voorhies WA, Fuchs J, Thomas S (2005) The longevity of Caenorhabditis elegans in soil. Biol Lett 1:247–249

    Article  PubMed  Google Scholar 

  • Vernmeij GJ (2004) Nature: an economic history. Princeton Univ. Press, Princeton

    Google Scholar 

  • Vorburger C (2005) Positive genetic correlations among major life-history traits related to ecological success in the aphid Myzus persicae. Evolution 59:1006–1015

    PubMed  Google Scholar 

  • Watt WB (1986) Power and efficiency as indexes of fitness in metabolic organization. Am Nat 127:629–653

    Article  CAS  Google Scholar 

  • Wedekind C (1994) Handicaps not obligatory in sexual selection for resistance genes. J Theor Biol 170:57–62

    Article  PubMed  CAS  Google Scholar 

  • White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer-Verlag, Berlin

    Google Scholar 

  • White TCR (2005) Why does the world stay green? Nutrition and survival of plant-eaters. CSIRO Publishing, Collingwood, Australia

    Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Zotin AI (1990) Thermodynamic bases of biological processes: physiological reactions and interactions. Walter de Gruyter, New York

    Google Scholar 

Download references

Acknowledgement

The referees have improved the paper substantially for which I am most grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Parsons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, P.A. Energetic efficiency under stress underlies positive genetic correlations between longevity and other fitness traits in natural populations. Biogerontology 8, 55–61 (2007). https://doi.org/10.1007/s10522-006-9028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-006-9028-8

Keywords

Navigation