Skip to main content

Advertisement

Log in

Hemocompatibility of Silver Nanoparticles Based on Conjugate of Quaternized Chitosan with Gallic Acid in In Vitro Experiments

  • BIOTECHNOLOGIES
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied hemocompatibility of silver nanoparticles synthesized on the basis of a conjugate of quaternized chitosan with gallic acid (QChit-Gal). For the three variants of silver particles (Nos. 1, 2, and 3), the QChit-Gal:AgNO3 ratio was 5:1, 5:3, and 1:1, respectively. Anticoagulant activity of all samples of silver nanoparticles was lower than that of the conjugate. Samples of nanoparticles Nos. 1 and 2 in a concentration of 0.0233 mg/ml did not affect plasma clotting time and can be used for intravenous administration. However, their concentration in the blood should not exceed 0.01 mg/ml, because in this concentration they do not affect erythrocyte membrane, do not induce platelet aggregation, and do not affect platelet aggregation induced by ADP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makarov VA, Spasov AA, Plotnikov MB, Belozerskaya GG, Vasil’eva TM, Drozd NN, Svistunov AA, Kucheryavenko AF, Malykhina LS, Naumenko LV, Nevedrova OE, Petrukhina GN, Aliev OI, Plotnikova TM. Methodical recommendations for the study of drugs affecting hemostasis. Manual for Preclinical Studies of New Pharmacological Substances. Part I, Mironov AN, ed. Moscow, 2012. P. 453-479. Russian.

  2. Stanishevskaya IE, Stoinova AM, Marakhova AI, Stanishevskiy YaM. Silver nanoparticles: preparation and use for medical purposes. Razrabotka Registratsiya Lek. Sredstv. 2016;(1):66- 69. Russian.

  3. Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927-929.

    Article  CAS  PubMed  Google Scholar 

  4. Cyril N, George JB, Josef L, Raghavamenon AC, Sylas VP. Assessment of antioxidant, antibacterial and anti-proliferative (lung cancer cell line A549) activities of green synthesized silver nanoparticles from Derris trifoliata. Toxicol. Res. (Camb.). 2019;8(2):297-308.

  5. Dash BC, Réthoré G, Monaghan M, Fitzgerald K, Gallagher W, Pandit A. The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility. Biomaterials. 2010;31(32):8188- 8197.

    Article  CAS  PubMed  Google Scholar 

  6. Guo P, Anderson JD, Bozell JJ, Zivanovic S. The effect of solvent composition on grafting gallic acid onto chitosan via carbodiimide. Carbohydr. Polym. 2016;140:171-180.

    Article  CAS  PubMed  Google Scholar 

  7. Huang X, Pang Y, Liu Y, Zhou Y, Wang Z, Hu Q. Green synthesis of silver nanoparticles with high antimicrobial activity and low cytotoxicity using catechol-conjugated chitosan. RSC Adv. 2016;6):64357-64363.

  8. Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019;20(4). pii: E865. doi: https://doi.org/10.3390/ijms20040865

  9. Mittal P, Vardhan H, Ajmal G, Bonde GV, Kapoor R, Mittal A, Mishra B. Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel. Drug Dev. Ind. Pharm. 2019;45(3):365-378.

    Article  CAS  PubMed  Google Scholar 

  10. Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Saravanan M, Ubaid MF, Ali M, Shinwari ZK. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine (Lond.). 2016;11(23):3157-3177.

    Article  CAS  PubMed  Google Scholar 

  11. Peng Y, Song C, Yang C, Guo Q, Yao M. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds. Int. J. Nanomedicine. 2017;12:295-304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shagdarova B, Lunkov A, Il’ina A, Varlamov V. Investigation of the properties of N-[(2-hydroxy-3-trimethylammonium)propyl] chloride chitosan derivatives. Int. J. Biol. Macromol. 2019;124:994-1001.

    Article  CAS  PubMed  Google Scholar 

  13. Stuart RK, Michel A. Monitoring heparin therapy with the activated partial thromboplastin time. Can. Med. Assoc. J. 1971;104(5):385-388.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Verma J, Kanoujia J, Parashar P, Tripathi CB, Saraf SA. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Transl. Res. 2017;7(1):77-88.

    Article  CAS  PubMed  Google Scholar 

  15. Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front. Bioeng. Biotechnol. 2018;6. ID 99. doi: https://doi.org/10.3389/fbioe.2018.00099

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Drozd.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 168, No. 10, pp. 496-500, October, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozd, N.N., Lunkov, A.P., Il’ina, A.V. et al. Hemocompatibility of Silver Nanoparticles Based on Conjugate of Quaternized Chitosan with Gallic Acid in In Vitro Experiments. Bull Exp Biol Med 168, 507–511 (2020). https://doi.org/10.1007/s10517-020-04742-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04742-8

Key Words

Navigation