Skip to main content

Advertisement

Log in

Tissue Engineering Construct on the Basis of Multipotent Stromal Adipose Tissue Cells and Osteomatrix for Regeneration of the Bone Tissue

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We developed a new method of creation of tissue engineering constructs for regeneration of the bone tissue based on the principle of free distribution of cells in a fibrin clot within a scaffold. The tissue engineering construct includes multipotent stromal adipose tissue cells committed in osteogenic lineage, platelet-rich plasma, and resorbed material on the basis of xenogeneic bone collagen. The culture of bone progenitor cells was characterized by the main markers of osteoblastic differon. The material meets all requirements for materials intended for tissue engineering. An innovative high-technological tissue engineering product for clinical application is prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. I. Anisimov and V. G. Emel’yanov, Demineralized Bone Transplant and Its Application [in Russian], St. Petersburg (1993), pp. 129–134.

  2. I. V. Arutyunyan, A. A. Rzhaninova, A. V. Volkov, and D. V. Gol’dshtein, Klet. Tekhnol. Biol. Med., No. 2, 67–72 (2009).

  3. S. A. Asnina, V. S. Agapov, A. F. Panasyuk, et al., Institut Stomatol., 23, No. 2, 43–44 (2004).

    Google Scholar 

  4. M. G. Vasil’ev, A. I. Snetkov, V. E. Tsukanov, et al., Det. Khir., No. 2, 44–49 (2006).

  5. A. V. Volkov, I. S. Alekseeva, A. A. Kulakov, et al., Klet. Tekhnol. Biol. Med., No. 2, 72–77 (2010).

  6. I. A. Kirillova, N. G. Fomichev, V. T. Podorozhnaya, and Yu. V. Etitein , et al., Travmatol. Ortoped. Ross., 49, No. 3, 63–67 (2008).

    Google Scholar 

  7. M. V. Lekishvili, A. V. Balberkin, M. G. Vasil’ev, et al., Vestn. Travmatol. Ortoped., No. 4, 80–84 (2002).

  8. A. F. Panasyuk, D. A. Savashchuk, E. V. Larionov, and V. M. Kravets, Klin. Stomatol., No. 1, 44–46 (2004).

  9. A. F. Panasyuk, D. A. Savashchuk, E. V. Larionov, and V. M. Kravets, Klin. Stomatol., No. 2, 54–57 (2004).

  10. K. Bieback, S. Kern, A. Kocaomer, et al., Biomed. Mater. Eng., 18, Suppl. 1, S71-S76 (2008).

    PubMed  CAS  Google Scholar 

  11. P. Malladi, Y. Xu, G. P. Yang, and M. T. Longaker, Tissue Eng., 12, No. 7, 2031–2040 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. D. Noel, D. Caton, S. Roche, et al., Exp. Cell Res., 314, No. 7, 1575–1584 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. J. R. Porter, T. T. Ruckh, K. C. Popat, Biotechnol. Prog., 25, No. 6, 1539–1560 (2009).

    PubMed  CAS  Google Scholar 

  14. J. P. van Leeuwen, M. van Driel, G. J. van den Bemd, and H. A. Pols, Crit. Rev. Eukaryot. Gene Expr., 11, Nos. 1–3, 199–226 (2001).

    PubMed  Google Scholar 

  15. H. E. Young, C. Duplaa, M. Romero-Ramos, et al., Cell Biochem. Biophys., 40, No. 1, 1–80 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Bukharova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 167–173, September, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukharova, T.B., V.Arutyunyan, I., Shustrov, S.A. et al. Tissue Engineering Construct on the Basis of Multipotent Stromal Adipose Tissue Cells and Osteomatrix for Regeneration of the Bone Tissue. Bull Exp Biol Med 152, 153–158 (2011). https://doi.org/10.1007/s10517-011-1476-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-011-1476-8

Key Words

Navigation