Skip to main content
Log in

Bacteriophages for aquaculture disease control

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The administration of phage therapy for aquaculture disease has been anticipated by the researchers over a decade as an effective and an alternative control mechanism, though the application of phages as a disease control agent in aquaculture projects various beneficial aspects, critical limitations, and negative influence on production. This present scenario made a pressure to review the possible disclosure of phage therapy with its critical boundaries and limiting influences towards the disease control management of aquaculture (fish, shrimps, lobsters, bivalve mollusks, etc.). The phage therapy has proven its efficacy as a biocontrol agent towards aquaculture disease, although the sustainability of the phage therapy needs further investigation on the following: commercial application, formulation of bacteriophage for layman usage, and development of protocol for various diseases with consistent results. The marginal space existing between the inventors and the end user must be fulfilled by the awareness program and the government policies. The administration of the phage therapy could be effective for long-term safety and negatively influence the development of multidrug-resistant bacteria pathogens in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Sum AB, Al-Dhabi NA (2014) Isolation of bacteriophage from Mentha species in Riyadh, Saudi Arabia. J Pure Appl Micro 8(2):945–949

    Google Scholar 

  • Almeida GMF, Mäkelä K, Laanto E, Pulkkinen J, Vielma J, Sundberg L-R (2019) The Fate of Bacteriophages in Recirculating Aquaculture Systems (RAS)—Towards Developing Phage Therapy for RAS. Antibiotics 8 (4):192

  • Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43(2):119–124

    CAS  PubMed  Google Scholar 

  • Azam AH, Tanji Y (2019) Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Micro Biotech 103:2121–2131

    CAS  Google Scholar 

  • Berthe FCJ (ed) (2005) Diseases in mollusc hatcheries and their paradox in health management, Fish Health Section. Asian Fisheries Society, Manila

    Google Scholar 

  • Bradley DE (1967) Ultrastructure of bacteriophage and bacteriocins. Bact Rev 31:230–314

    CAS  PubMed  Google Scholar 

  • Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J., Egan ME, Erb ML, Vavilina A, Nonejuie P, Nieweglowska E, Pogliano K, Agard DA, Villa E, Pogliano J (2019) Viral capsid trafficking along treadmilling tubulin filaments in Bacteria. Cell 177: 1771–1780

  • Chen L, Yuan S, Liu Q, Mai G, Yang J, Deng D, Zhang B, Liu C, Ma Y (2018) In vitro design and evaluation of phage cocktails against Aeromonas salmonicida. Front Microbiol 9:1476. https://doi.org/10.3389/fmicb.2018.01476

    Article  PubMed  PubMed Central  Google Scholar 

  • Citorik RJ, Mimee M, Lu TK (2014) Bacteriophage-based synthetic biology for the study of infectious diseases. Curr Opi Micro 19:59–69

    CAS  Google Scholar 

  • Crothers-Stomps C, Hoj L, Bourne DG, Hall MR, Owens L (2010) Isolation of lytic bacteriophage against Vibrio harveyi. J Appl Microbiol 108(5): 1744–1750, 2010

  • Daw MA, Falkiner FR (1996) Bacteriocins: nature, function and structure. Micron 27:467–479

    CAS  PubMed  Google Scholar 

  • Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage-derived proteins – application approaches. Curr Med Chem 22(14):1757–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  • García R, Latz S, Romero J, Higuera G, García K and Bastías R (2019) Bacteriophage Production Models: An Overview. Front. Microbiol. 10: 1187

  • Hagens S, Offerhaus ML (2014) Bacteriophages – new weapons for food safety. Food Technol 62:46–54

    Google Scholar 

  • Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I (2012) Bacteriophages and their implications on future biotechnology: a review. Virol J 9(9):1–8

    Google Scholar 

  • Holmstrom K, Graslund S, Wahlstrom A, Poungshompoo S, Bengtsson BE, Kautsky N (2003) Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int J Food Sci Technol 38(3):255–266

    CAS  Google Scholar 

  • Imbeault S, Parent S, Lagace M, Uhland CF, Blais JF (2006) Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed Brook Trout. J Aquat Anim Health 18(3):203–214

    Google Scholar 

  • Inal JM (2003) Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp 51:237–244

    CAS  Google Scholar 

  • Jun JW, Shin TH, Kim JH, Shin SP, Han JE, Heo GJ, De Zoysa M, Shin GW, Chai JY, Park SC. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3: K6 pandemic clinical strain. J Infect Dis. 2014;210:72–8

  • Jun J, Giri SS, Kim HJ, Yun SK, Chi C, Chai JY, Lee BC, Park SC (2016) Bacteriophage application to control the contaminated water with Shigella. Sci Rep 6:22636. https://doi.org/10.1038/srep22636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun JW, Han JE, Giri SS, Tang KFJ, Zhou X, Aranguren LF, Kim HJ, Yun S, Chi C, Kim SG, Park SC (2018) Phage application for the protection from acute hepatopancreatic necrosis disease (AHPND) in Penaeus vannamei. Ind J Micro 58:14–117

    Google Scholar 

  • Kalatzis P, Castillo D, Katharios P, Middelboe M (2018) Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics 7 (1):15

  • Karunasagar I, Pai R, Malathi GR, Karunasagar I (1994) Mass mortality of Penaeus monodon larvae due to antibiotic resistant Vibrio harveyi infection. Aquaculture 128(3–4):203–209

  • Karunasagar I, Vinod MG, Kennedy B, Vijay A (2005) Biocontrol of bacterial pathogens in aquaculture with emphasis on phage therapy, In: Walker PJ, Lester RG, Bondad-Reantaso MG (ed) Diseases in Asian aquaculture V. Fish Health section, Asian Fisheries Society, Manila, pp 535–542

  • Karunasagar I, Shivu MM, Girisha SK, Krohne G (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268(1–4):288–292

    Google Scholar 

  • Kiran GS, Priyadharshini S, Dobson A, Gnanamani E, Selvin J (2016). Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ Biofilms and Microbiomes 2: 16002.

  • Kongari R, Rajaure M, Cahill J, Rasche E, Mijalis E, Berry J, Young R (2018) Phage spanins: diversity, topological dynamics and gene convergence. BMC Bioinformatics 15 19(1): 326

  • Laanto E, Bamford JKH, Ravantti JJ, Sundberg LR (2015) The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Front Microbiol 6: 829. https://doi.org/10.3389/fmicb.2015.00829

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    CAS  PubMed  Google Scholar 

  • Lavilla-Pitogo CR, Baticados MCL, Cruz-Lacierda ER, .de la Pena LD (1990) Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 91(1–2): 1–13

    Google Scholar 

  • Lehti TA, Pajunen MI, Skog MS, Finne J (2017) Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat Commun 8(1915):1–12

    CAS  Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2:166–173

    CAS  PubMed  Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1(2):111–114

    PubMed  PubMed Central  Google Scholar 

  • Ly-Chatain MH (2014) The factors affecting effectiveness of treatment in phages therapy. Front Microbiol 5(51):1–7

    Google Scholar 

  • Manning AJ, Kuehn MJ (2011) Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 11:258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman MD, Wakiguchi H, Sugihara S, Sugiura T, Koda S, Muraoka A, Imai S (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage phi MR11. J Infect Dis 187:613–624

    CAS  PubMed  Google Scholar 

  • Meaden S, Koskella B (2013) Exploring the risks of phage application in the environment. Front Microbiol 4:358

    PubMed  PubMed Central  Google Scholar 

  • Mohammed-Ali MN, Jamalludeen NM (2015) Isolation and characterization of bacteriophage against methicillin resistant Staphylococcus aureus. J Med Microb Diagn 5: 213

  • Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153:13–18

    PubMed  Google Scholar 

  • Nakai T, Sugimoto R, Park KH, Matsuoka S, Mori K, Nishioka T, Maruyama K (1999) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Org 37:33–41

    CAS  PubMed  Google Scholar 

  • Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23:185–191

    CAS  PubMed  Google Scholar 

  • Oliveira J, Castilho F, Cunha A, Pereira MJ (2012) Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquacult Int 20:879–910

    Google Scholar 

  • Oliveira H, Sao-Jose C, Azeredo J (2018) Phage derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses 10(6):292

    PubMed Central  Google Scholar 

  • Ormala AM, Jalasvuori M (2013) Phage therapy: should bacterial resistance to phages be a concern, even in the long run? Bacteriophage 3:e24219

    PubMed  PubMed Central  Google Scholar 

  • Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Micro 104:1–13

    CAS  Google Scholar 

  • Park SC, Nakai T (2003) Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis Aquat Org 53:33–39

    PubMed  Google Scholar 

  • Park KH, Matsuoka S, Nakai T, Muroga K (1997) A virulent bacteriophage of Lactococcus garvieae (formerly Enterococcus seriolicida) isolated from yellowtail Seriola quinqueradiata. Dis Aquat Org 29(2):145–149

    Google Scholar 

  • Park KH, Kato H, Nakai T, Muroga K (1998) Phage typing of Lactococcus garvieae (formerly Enterococcus seriolicida) a pathogen of cultured yellowtail. Fish Sci 64:62–64

    CAS  Google Scholar 

  • Park SC, Shimamura I, Fukunaga M , Mori KI, Nakai (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66:1416–1422

  • Payne M (2007) Towards successful aquaculture of the tropical rock lobster, Panulirus ornatus: the microbiology of larval rearing, PhD Thesis, University of Queensland

  • Pelkonen S, Aalto J, Finne J (1992) Differential activities of bacteriophage depolymerase on bacterial polysaccharide: binding is essential but degradation is inhibitory in phage infection of K1-defective Escherichia coli. J Bacteriol 174:7757–7761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira C, Silva YJ, Santos AL, Cunha Â, Gomes NCM, Almeida A (2011) Bacteriophages with Potential for Inactivation of Fish Pathogenic Bacteria: Survival, Host Specificity and Effect on Bacterial Community Structure. Marine Drugs 9 (11):2236–2255

  • Pereira C, Moreirinha C, Teles L, Rocha RJM, Calado R, Romalde JL, Nunes ML (2017) Adelaide Almeida, Application of phage therapy during bivalve depuration improves Escherichia coli decontamination. Food Microbiol 61: 102–112

  • Perreten V (2005) Resistance in the food chain and in bacteria from animals: relevance to human infections. In: White DG, Alekshun MN, McDermott PF (eds) Frontiers in antimicrobial resistance. American Society for Microbiology, Washington, DC, p 575

    Google Scholar 

  • Rao BM, Lalitha KV (2015) Bacteriophages for aquaculture: Are they beneficial or inimical. Aquaculture 437:146-154

  • Richards GP (2014) Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage 4(4): e975540 1-12

  • Rico A, Satapornvanit K, Haque MM, Min J, Nguyen PT, Telfer TC, van den Brink PJ, (2012) Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Reviews in Aquaculture 4 (2):75-93

  • Selvin J, Lipton AP (2003). Leaching and residual kinetics of chloramphenicol incorporated medicated feed treated to juvenile black tiger shrimp Penaeus monodon Fabricious. Fish Technol 40: 13-17

  • Selvin J, Lipton AP (2004) Leaching and residual kinetics of oxytetracycline incorporated medicated feed treated to juvenile black tiger shrimp Penaeus monodon Fabricious. Fish Technol 41: 93-100

  • Ross A, Ward S, Hyman P (2016) More is better: selecting for broad host range bacteriophages. Front Microbiol 7(1352):1–6

    Google Scholar 

  • Shivu MM, Rajeeva BC, Girisha SK, Karunasagar I, Krohne G, Karunasagar I (2007) Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environments along the coast of India. Environ Microbiol 9(2): 322–331, 2007

  • Skurnik M, Strauch E (2006) Phage therapy: facts and fiction. Int J Med Microbiol 296:5–14

    CAS  PubMed  Google Scholar 

  • Stomps CC, Hoj L, Bourne DG, Hall MR, Owens L (2010) Isolation of lytic bacteriophage against Vibrio harveyi. J Appl Micro 108:1744–1750

    Google Scholar 

  • Subharthi P (2015) Phage therapy an alternate disease control in aquaculture: a review on recent advancements. IOSR J Agric Vet Sci 8(9):68–81

    Google Scholar 

  • Sugumar G, Nakai T, Hirata Y, Matsubara D, Muroga K (1998) Vibrio splendidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis Aquat Org 33:111–118

    CAS  PubMed  Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris Jr JG (2001) Bacteriophage therapy. Antimicrob. Agents Chemother 45: 649–659

  • Tang SS, Biswas SK, Tan WS, Saha AK, Leo BF (2019) Efficacy and potential of phage therapy against multidrug resistant Shigella spp. Peer J 7:e6225

    PubMed  Google Scholar 

  • Verner-Jeffreys DW, Algoet M, Pond MJ, Virdee HK, Bagwell NJ, Roberts EG (2007) Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture 270(1–4):475–484

    Google Scholar 

  • Vinod MG, Shivu MM, Umesha KR, Rajeeva BC, Krohne G, Karunasagar I, Karunasagar I (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117–124. https://doi.org/10.1016/j.aquaculture.2005.12.003

    Article  CAS  Google Scholar 

  • Wang Y, Bartn M, Elliott L, Li X, Abraham S, Dae MO, Munr J (2017) Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture 473:251–258

    CAS  Google Scholar 

  • Wittebole X, De Roock S, Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5:226–235

    PubMed  Google Scholar 

  • Wu JL, Chao WJ (1982) Isolation and application of a new bacteriophage, ET-1, which infect Edwardsiella tarda, the pathogen of edwardsiellosis, Rep Fish Dis Res IV (8): 8–17

  • Wu JL, Lin HM, Jan L, HSU YL, Chang LH (1981) Biological control of fish bacterial pathogen, Aeromonas hydrophila, by bacteriophage AH1. Fish Pathol 15:271–276

    Google Scholar 

  • Young R, Wang IN, Roof WD (2000) Phages will out strategies of host cell lysis. Trends Microbiol 8:120–128

    CAS  PubMed  Google Scholar 

Download references

Funding

The University Grants Commission, New Delhi, provided research grant and support to SS and PR. GSK received research grant from DBT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Selvin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by anyof the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninawe, A.S., Sivasankari, S., Ramasamy, P. et al. Bacteriophages for aquaculture disease control. Aquacult Int 28, 1925–1938 (2020). https://doi.org/10.1007/s10499-020-00567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-020-00567-4

Keywords

Navigation