Skip to main content

Advertisement

Log in

Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Wastewater management and disposal in aquaculture is becoming increasingly important due to stringent water regulations regarding waste discharges into natural water systems. Recirculation aquaculture is one of the technologies designed to reduce waste discharge through the nitrification process. However, nitrification results in nitrate accumulation which is normally reduced by dilution through water exchange. Water exchange is only possible with sufficient water. Although nitrification is a conventional process, it has limitations because the autotrophic bacteria require long start-up and multiplication periods. The nitrifiers require high levels of oxygen with relatively higher aeration costs. Moreover, the bacteria are sensitive to rapid changes in pH, temperature, and flow rate. Denitrification can be a solution to the limitations of nitrification since denitrifiers are most abundant in the natural environment and have higher growth rates than nitrifiers. In addition, the process reduces energy costs since there is no need for aeration, water consumption is also reduced drastically since water exchange is minimized. Organic loading can be reduced when fish waste is utilized as a carbon source. An alternative process to manage aquaculture wastes is through anaerobic ammonium oxidation (anammox), where ammonia and nitrite are converted into nitrogen gas. Anammox can efficiently reduce ammonia and nitrites from culture water, but it has not received wide application in aquaculture. Aquaculture wastewater contains nutrients which are essential for plant growth. The plants maintain good water quality by absorbing the dissolved nutrients. Denitrification, anammox, and nutrient uptake by plants are feasible strategies to reduce wastes from aquaculture effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Hafedh YS, Alam A, Beltagi MS (2008) Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J World Aquacult Soc 39(4):510–520

    Google Scholar 

  • Alvarado JL, Langdon CJ, Teshima SI, Kanazawa A (1994) Effect of coating and encapsulation of crystalline amino acids on leaching in larval feeds. Aquaculture 122:335–346

    Google Scholar 

  • Arbiv R, van Rijn J (1995) Performance of a treatment system for inorganic nitrogen removal from intensive aquaculture systems. Aquac Eng 14:189–203

    Google Scholar 

  • Badiola M, Mendiola D, Bostock J (2012) Recirculating aquaculture systems (RAS) analysis: main issues on management and future challenges. Aquac Eng 51:26–35

    Google Scholar 

  • Biesterfeld S, Farmer G, Russell P, Figueroa L (2003) Effect of alkalinity type and concentration on nitrifying biofilm activity. Water Env Res 75(3):196–204

    CAS  Google Scholar 

  • Blancheton JP (2000) Developments in recirculation systems for Mediterranean fish species. Aquac Eng 22:17–31

    Google Scholar 

  • Boley A, Muller WR (2005) Denitrification with polycaprolactone as solid substrate in a laboratory-scale recirculated aquaculture system. Water Sci Technol 52(10–11):495–502

    CAS  PubMed  Google Scholar 

  • Boley A, Müller WR, Haider G (2000) Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquac Eng 22:75–85

    Google Scholar 

  • Bovendeur J, Eding EH, Henken AM (1987) Design and performance of a water recirculating system for high-density culture of the African catfish, Clarias gariepinus (Burchell 1822). Aquaculture 63:329–353

    Google Scholar 

  • Boyd CE, Tucker CS (2014) Handbook for aquaculture water quality. Craftmaster Printers, Auburn

    Google Scholar 

  • Boyd CE, Tucker C, Mcnevin A, Bostick A, Clay J (2007) Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Rev Fish Sci 15(4):327–360. https://doi.org/10.1080/10641260701624177

    Article  Google Scholar 

  • Broda E (1977) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol 17:491–493

    CAS  PubMed  Google Scholar 

  • Bureau DP, Hua K (2010) Towards effective nutritional management of waste outputs in aquaculture, with particular reference to salmonid aquaculture operations. Aquac Res 41(5):777–792

    Google Scholar 

  • Cameron SG, Schipper LA (2012). Hydraulic properties, hydraulic efficiency and nitrate removal of organic carbon media for use in denitrification beds. Ecol Eng 41:1–7

    Google Scholar 

  • Canziani R, Vismara R, Basilico D, Zinni L (1999) Nitrogen removal in fixed-bed submerged biofilters without backwashing. Water Sci Technol 40(4–5):145–152

    CAS  Google Scholar 

  • Cao L, Wang W, Yang Y, Yang C, Yuan Z, Xiong S, Diana J (2007) Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ Sci Pollut Res 14(7):452–462

    CAS  Google Scholar 

  • Cao S, Wang S, Peng Y, Wu C, Du R, Gong L, Ma B (2013) Achieving partial denitrification with sludge fermentation liquid as carbon source: the effect of seeding sludge. Bioresour Technol 149:570–574

    CAS  PubMed  Google Scholar 

  • Carter CG, Houlihan DF, Buchanan B, Mitchell AI (1994) Growth and feed utilization efficiencies of sea water Atlantic salmon, Salmo salar L., fed a diet containing supplementary enzyme. Aquac Fish Manag 25:37–46

    Google Scholar 

  • Castine SA, Erler DV, Trott LA, Paul NA, Nys R, Eyre BD (2012) Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N2 production. PLoS ONE 7(9):e42810. https://doi.org/10.1371/journal

  • Chanchoi N, Nitisoravut S, Schmidt JE (2008) Inactivation of anammox communities under concurrent operation of anaerobic ammonium oxidation (anammox) and denitrification. Bioresour Technol 99:3331–3333

    Google Scholar 

  • Chatvijitkul S, Boyd CE, Davis DA, McNevin AA (2017) Pollution potential indicators for feed-based fish and shrimp culture. Aqua 477:43–49. https://doi.org/10.1016/j.aquaculture.2017.04.034

    Article  CAS  Google Scholar 

  • Chen SL, Coffin DE, Malone RF (1997) Sludge production and management for recirculating aquacultural systems. J World Aquacult Soc 28(4):303–315

    Google Scholar 

  • Chen S, Ling J, Blancheton JP (2006) Nitrification kinetics of biofilm as affected by water quality factors. Aquac Eng 34:179–197

    Google Scholar 

  • Cho CY, Bureau DP (2001) A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquac Int 32:349–360

    CAS  Google Scholar 

  • Christianson L, Lepine C, Tsukuda S, Saito K, Summerfelt S (2015) Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems. Aquac Eng 68:10–18

    Google Scholar 

  • Chu L, Wang J (2013) Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source. Chemosphere 91(9):1310–1316

    CAS  PubMed  Google Scholar 

  • Colt J (2006) Water quality requirements for reuse systems. Aquac Eng 34(3):143–156

    Google Scholar 

  • Colt J, Lamoureux J, Patterson R, Rogers G (2006) Reporting standards for biofilter performance studies. Aquac Eng 34(3):377–388

    Google Scholar 

  • Conroy J, Couturier M (2010) Dissolution of minerals during hydrolysis of fish waste solids. Aquaculture 298(3–4):220–225

    CAS  Google Scholar 

  • Cripps SJ, Bergheim A (2000) Solids management and removal for intensive land-based aquaculture production systems. Aquac Eng 22(1–2):33–56

    Google Scholar 

  • Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuña-González J (2003) Nitrogen production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422(6932):606–608

    CAS  PubMed  Google Scholar 

  • Damon E, Seawright RB, Walker RRS (1998) Nutrient dynamics in integrated aquaculture hydroponics systems. Aquaculture 160:215–237

    Google Scholar 

  • Dauda AB, Akinwole AO, Olatinwo LK (2014) Biodenitrification of aquaculture wastewater at different drying times in water reuse system. J Agric Food Technol 4(2):6–12

    Google Scholar 

  • Davidson J, Good C, Welsh C, Brazil B, Summerfelt S (2009) Heavy metal and waste metabolite accumulation and their potential effect on rainbow trout performance in a replicated water reuse system operated at low or high flushing rates. Aquac Eng 41:136–145

    Google Scholar 

  • Davidson J, Good C, Welsh C, Summerfelt S (2011) The effects of ozone and water exchange rates on water quality and rainbow trout (Oncorhynchus mykiss) performance in replicated water recirculating systems. Aquac Eng 44:80–96

    Google Scholar 

  • Dediu L, Cristea V, Xiaoshua Z (2012) Waste production and valorization in an integrated aquaponic system with bester and lettuce. Afr J Biotechnol 11(9):2349–2358

    CAS  Google Scholar 

  • Delaide B, Goddek S, Karel J, Keesman J, Haissam M, Jijakli M (2018) A methodology to quantify the aerobic and anaerobic sludge digestion performance for nutrient recycling in aquaponics. Biotechnol Agron Soc Environ 22:2

    Google Scholar 

  • Durborow RM, Crosby DM, Brunson MW (1992) Ammonia in fish ponds. SRAC Publication No. 463

  • Ebeling JM, Timmons MB, Bisogni JJ (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257:346–358

    Google Scholar 

  • Eding EH, Kamstra A, Verreth JAJ, Huisman EA, Klapwijk A (2006) Design and operation of nitrifying trickling filters in recirculating aquaculture: a review. Aquac Eng 34(3):234–260

    Google Scholar 

  • Endut A, Jusoh A, Ali N, Wan Nik WB, Hassan A (2010) A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour Technol 101:1511–1517

    CAS  PubMed  Google Scholar 

  • Endut A, Jusoh A, Ali N, Wan Nik WB (2011) Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalin Water Treat 32(1–3):422–430

    CAS  Google Scholar 

  • Endut A, Jusoh A, Ali N (2014) Nitrogen budget and effluent nitrogen components in aquaponics recirculation system. Desalin Water Treat 52:744–752

    CAS  Google Scholar 

  • Endut A, Lananan F, Hamid SA, Jusoh A, War Nik WN (2016) Balancing of nutrient uptake by water spinach (Ipomoea aquatica) and mustard green (Brassica juncea) with nutrient production by African catfish (Clarias gariepinus) in scaling aquaponic recirculation system. Desalin Water Treat 57:60

    Google Scholar 

  • EPA (1993) Process design manual for nitrogen control. US EPA, Washington, DC

    Google Scholar 

  • Espinosa Moya EA, Angel Sahagún CA, Mendoza Carrillo JM, Albertos Alpuche PJ, Álvarez-González CA, Martínez-Yáñez R (2014) Herbaceous plants as part of biological filter for aquaponics system. Aquac Res 47(6):1716–1726. https://doi.org/10.1111/are.12626

    Article  CAS  Google Scholar 

  • Fdz-Polanco F, Garcia P, Villaverde S (1994) Temperature effect on nitrifying bacteria activity in biofilters: activation and free ammonia inhibition. Wat Sci Technol 30(11):121–130

    CAS  Google Scholar 

  • Freitag AR, Thayer LR, Leonetti C, Stapleton HMH (2015) Effects of elevated nitrate on endocrine function in Atlantic salmon, Salmo salar. Aquaculture 436:8–12

    CAS  Google Scholar 

  • Gallardo-Collí A, Hernández-Vergara MP, Pérez-Rostro CI, Ramírez-Gutiérrez SC (2014) Biculture tilapia/crayfish in aquaponic system Biculture of Tilapia (Oreochromis niloticus) and crayfish (Procambarus acanthophorus) and production of green corn fodder (Zea mays) in an aquaponic system. Glob Adv Res J Agric Sci 3(8):233–244

    Google Scholar 

  • Gelfand I, Barak Y, Even-Chen Z, Cytryn E, Krom M, Neori A, van Rijn J (2003) A novel zero-discharge intensive seawater recirculating system for culture of marine fish. J World Aquacult Soc 34:344–358

    Google Scholar 

  • Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater - a review. Bioresour Technol 99(10):3965–3974

    CAS  PubMed  Google Scholar 

  • Goddek S (2017) Opportunities and challenges of multi-loop aquaponic systems. Dissertation, Wageningen University, Wageningen

  • Goddek S, Keesman KJ (2018) The Necessity of Desalination Technology for Designing and Sizing Multi-Loop Aquaponics Systems The Necessity of Desalination Technology for Designing and Sizing Multi-Loop Aquaponics Systems. Desalination 428:76–85. https://doi.org/10.1016/j.desal.2017.11.024

    CAS  Google Scholar 

  • Goddek S, Delaide B, Mankasingh U, Ragnarsdottir KV, Jijakli H, Thorarinsdottir R (2015) Challenges of sustainable and commercial aquaponics. Sustainability 7:4199–4224. https://doi.org/10.3390/su7044199

    Article  Google Scholar 

  • Goddek S, Espinal CA, Delaide B, Jijakli MH, Schmautz Z, Wuertz S, Keesman KJ (2016) Navigating towards decoupled aquaponic systems: a system dynamics design approach. Water 8:303. https://doi.org/10.3390/w8070303

    Article  CAS  Google Scholar 

  • Graber A, Junge R (2009) Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246(1):147–156

    CAS  Google Scholar 

  • Groeneweg J, Sellner B, Tappe W (1994) Ammonia oxidation in Nitrosomonas at NH3 concentrations near km: effects of pH and temperature. Water Res 28(12):2561–2566

    Google Scholar 

  • Guillén JS, Yimman Y, Vazquez CL, Brdjanovic D, Van Lier JB (2014) Effects of organic carbon source, chemical oxygen demand/N ratio and temperature on autotrophic nitrogen removal. Water Sci Technol 69(10):2079–2084

    Google Scholar 

  • Gutierrez-Wing MT, Malone RF, Rusch KA (2012) Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification. Aquac Eng 51:36–43

    Google Scholar 

  • Güven D, Dapena A, Kartal B, Schmid MC, Maas B, van de Pas-Schoonen K, Strous M (2005) Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 71(2):1066–1071

    PubMed  PubMed Central  Google Scholar 

  • Halling-Soerensen B, Hjuler H (1992) Simultaneous nitrification and denitrification with an upflow fixed bed reactor applying clinoptilolite as media. Water Treat 7(1):77–88

    CAS  Google Scholar 

  • Hamlin HJ, Michaels JT, Beaulaton CM, Graham WF, Dutt W, Steinbach P (2008) Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquac Eng 38(2):79–92

    Google Scholar 

  • Handy RD, Poxton MG (1993) Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous compounds by marine fish. Rev Fish Biol Fish 3(3):205–241

    Google Scholar 

  • Hargreaves JA (2006) Photosynthetic suspended-growth systems in aquaculture. Aquac Eng 34(3):344–363

    Google Scholar 

  • Hargreaves JA, Tucker CS (2004) Managing ammonia in fish ponds. SRAC Publication No. 4603

  • Hashem S, Salam MA, Asadujjaman M, Li F (2014) Nutrient recovery from in fish farming wastewater: an aquaponics system for plant and fish integration. World J Fish Mar Sci 6(4):355–360

    Google Scholar 

  • Haynes R (2012) Mineral nitrogen in the plant-soil system. Academic Press Inc., Orlando

  • Healy MG, Ibrahim TG, Lanigan GJ, Serrenho AJ, Fenton O (2012) Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecol Eng 40:198–209

    Google Scholar 

  • Hiraishi A, Khan ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61(2):103–109

    CAS  PubMed  Google Scholar 

  • Hirayama K, Mizuma H, Mizue Y (1988) The accumulation of dissolved organic substances in closed recirculation culture systems. Aquac Eng 7(2):73–87

    Google Scholar 

  • Hiscock KM, Lloyd JW, Lerner DN (1991) Review of natural and artificial denitrification of groundwater. Water Res 25(9):1099–1111

    CAS  Google Scholar 

  • Hochmuth GJ (2001) Fertilizer management for greenhouse vegetables. In: Hochmuth G, Hochmuth B (eds) Florida greenhouse vegetable production handbook, vol 3. University of Florida, Gainsville

  • Hrubec TC, Smith SA, John L, Robertson JL (1996) Nitrate toxicity: a potential problem of recirculating aquaculture. In: Roanoke VA (ed) Successes and failures in commercial recirculating aquaculture. Northeast Regional Agricultural Engineering Service Ithaca (NRAES), Ithaca, pp 41–48

    Google Scholar 

  • Hu Z, Lee JW, Chandran K, Kim S, Brotto AC, Khanal SK (2015) Effect of plant species on nitrogen recovery in aquaponics. Bioresour Technol 188:92–98

    CAS  PubMed  Google Scholar 

  • Hussain T, Verma AK, Tiwari VK, Prakash C, Rathore G, Shete AP, Nuwansi KKT (2014) Optimizing koi carp, Cyprinus carpio var. Koi (Linnaeus, 1758), stocking density and nutrient recycling with spinach in an aquaponic system. J World Aquacult Soc 45(6):652–661

    CAS  Google Scholar 

  • Iwama GK (1991) Interactions between aquaculture and the environment. Crit Rev Environ Control 21(2):177–216

    Google Scholar 

  • Jenni S, Vlaeminck SE, Morgenroth E, Udert KM (2014) Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios. Water Res 49:316–326

    CAS  PubMed  Google Scholar 

  • Kaiser H, Schmitz O (1988) Water quality in a closed recirculating fish culture system influenced by the addition of a carbon source in relation to the feed uptake by fish. Aquac Fish Manag. 19:265–273

    CAS  Google Scholar 

  • Kartal B, Kuenen JV, Van Loosdrecht MCM (2010) Sewage treatment with anammox. Science 328(5979):702–703

    CAS  PubMed  Google Scholar 

  • Klas S, Mozes N, Lahav O (2006a) A conceptual, stoichiometry-based model for single-sludge denitrification in recirculating aquaculture systems. Aquaculture 259:328–341

    Google Scholar 

  • Klas S, Mozes N, Lahav O (2006b) Development of a single-sludge denitrification method for nitrate removal from RAS effluents: lab scale results vs. model prediction. Aquaculture 259:342–353

    CAS  Google Scholar 

  • Klemenčič AK, Bulc TG (2015) The use of vertical constructed wetland and ultrasound in aquaponic systems. Environ Sci Pollut Res 22(2):1420–1430

    Google Scholar 

  • Kloas W, Groß R, Baganz D, Graupner J, Monsees H, Schmidt U, Staaks G, Suhl J, Tschirner M, Wittstock B (2015) A new concept for aquaponic systems to improve sustainability, increase productivity and reduce environmental impacts. Aquac Environ Interact 7:179–192

    Google Scholar 

  • Knosche R (1994) An effective biofilter type for eel culture in recirculating systems. Aquac Eng 13:71–82

    Google Scholar 

  • Krom MD, David AB, Ingall ED, Benning LG, Clerici S, Bottrell S, Davies C, Lahav O, Massada IB, Yackoubov D, Zelikson R, Mozes N, Tal Y, Tarre S (2009) Quantification of anammox activity in a denitrification reactor for a recirculating aquaculture system. Aquaculture 288(1):76–82

    Google Scholar 

  • Lahav O, Massada IB, Yackoubov D (2009) Quantification of anammox activity in a denitrification reactor for a recirculating aquaculture system. Aquaculture 288(1):76–82

    CAS  Google Scholar 

  • Lall SP, Dumas A (2015) Nutritional requirements of cultured fish: Formulating nutritionally adequate feeds. In: Davis DA (ed) Feed and feeding practices in aquaculture. Woodhead Publishing, Cambridge, p 53–100

    Google Scholar 

  • Lam SS, Ma NL, Jusoh A, Ambak MA (2015) Biological nutrient removal by recirculating aquaponic system: optimization of the dimension ratio between the hydroponic and rearing tank components. Int Biodeter Biodegr 102:107–115

    CAS  Google Scholar 

  • Leal CD, Pereira AD, Nunes FT, Ferreira LO, Coelho ACC, Bicalho SK, de Araújo JC (2016) Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: effect of COD/N ratios on process performance and bacterial community structure. Bioresour Technol 211:257–266

    CAS  PubMed  Google Scholar 

  • Lee S III, Koopman B, Park SK, Cadee K (1995) Effect of fermented wastes on denitrification in activated sludge. Water Environ Res 67(7):1119–1122

    CAS  Google Scholar 

  • Lee PG, Lea RN, Dohmann E, Prebilsky W, Turk PE, Ying H, Whitson JL (2000) Denitrification in aquaculture systems: an example of a fuzzy logic control problem. Aquac Eng 23(1):37–59

    Google Scholar 

  • Lekang OI (ed) (2008) Aquaculture engineering. Blackwell Publising Ltd., Oxford

    Google Scholar 

  • Lennard WA, Leonard BV (2006) A comparison of three different hydroponic sub-system (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac Int 14:539–550

    Google Scholar 

  • Léonard N, Guiraud JP, Gasset E, Caillères JP, Blancheton JP (2002) Bacteria and nutrients—nitrogen and carbon—in a recirculating system for sea bass production. Aquac Eng 26:111–127

    Google Scholar 

  • Libey GS (1993) Evaluation of a drum filter for removal of solids from a recirculating aquaculture system. In: Wang JK (ed) Techniques for modern aquaculture, Proceedings of an Aquacultural Engineering Conference. American Society, Spokane

    Google Scholar 

  • Licamele JD (2009) Biomass production and nutrient dynamics in an aquaponics system. Dissertation, The University of Arizona, Tucson

  • Liew HJ, Sinha AK, Nawata CM, Blust R, Wood CM, Boeck G (2013) Deferential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aqua Tox 126:63–76

    CAS  Google Scholar 

  • Lin YF, Jing SR, Lee DY, Wang TW (2002) Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 209:169–184

    CAS  Google Scholar 

  • Ling J, Chen S (2005) Impact of organic carbon on nitrification performance of different types of biofilters. Aqua Eng 33:150–162

    Google Scholar 

  • Lopez A (1997) Aquafeeds and the environment. In: Tacon AGJ, Basurco B (eds) Feeding tomorrow’s fish. CIHEAM, Zaragoza, pp 275–289 (Cahiers Options Mediterraneennes; n. 22)

    Google Scholar 

  • Lopez H, Puig S, Ganigue R, Ruscalleda M, Balaguer MD, Coloprim J (2008) Start-up and enrichment of a granular anammox SBR to treat high nitrogen load wastewaters. J Chem Technol Biotechnol 83(3):233–241

    CAS  Google Scholar 

  • López-Arredondo DL, Leyva-González MA, Alatorre-Cobos F, Herrera-Estrella L (2013) Biotechnology of nutrient uptake and assimilation in plants. Int J Dev Biol 57:595–610

    PubMed  Google Scholar 

  • Losordo TM, Westeman PW (1994) An analysis of biological, economic, and engineering factors affecting the cost of fish production in recirculation aquaculture systems. J World Aquac Soc 24:193–203

    Google Scholar 

  • Losordo TM, Westers H (1994) System carrying capacity and flow estimation. In: Timmons MB, Losordo TM (eds) Aquaculture water reuse systems: engineering design and management. Elsevier, Amsterdam, pp 9–60

  • Losordo TM, Hobbs AO, DeLong DP (2000) The design and operational characteristics of the CP&L/EPRI fish barn: a demonstration of recirculating aquaculture technology. Aquac Eng 22:3–16

    Google Scholar 

  • Magram SF (2010) Drinking water denitrification in a packed bed anoxic reactor: effect of carbon source and reactor depth. J Appl Sci 10(7):558–563

    CAS  Google Scholar 

  • Malone RF, Pfeiffer TJ (2006) Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquac Eng 34(3):389–402

    Google Scholar 

  • Manoj VR, Vasudevan N (2012) Removal of nutrients in denitrification system using coconut coir fibre for the biological treatment of aquaculture wastewater. J Environ Biol 33(2):271

    CAS  PubMed  Google Scholar 

  • Martins CIM, Pistrin MG, Ende SSW, Eding EH, Verreth JAJ (2009) The accumulation of substances in recirculating aquaculture systems (RAS) affects embryonic and larval development in common carp, Cyprinus carpio. Aquaculture 291:65–73

    Google Scholar 

  • Martins CIM, Eding EH, Verdegem MCJ, Heinsbroek LTN, Schneider O, Blancheton JP, Roque d’Orbcastel E, Verret JAJ (2010) New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquac Eng 43(3):83–93

    Google Scholar 

  • Masser MP, Rakocy J, Losordo TM (1992) Recirculating aquaculture tank production systems management of recirculating systems. SRAC Publication No. 452

  • Meade JW (1985) Allowable ammonia for fish culture. Prog Fish Cult 47:135–145

    CAS  Google Scholar 

  • Meriac A, Eding EH, Schrama J, Kamstra A, Verreth JA (2014) Dietary carbohydrate composition can change waste production and biofilter load in recirculating aquaculture systems. Aquaculture 420–421:254–261

    Google Scholar 

  • Michaud L, Blancheton JP, Bruni V, Piedrahita R (2006) Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquac Eng 34(3):224–233

    Google Scholar 

  • Mirzoyan N (2009) Waste treatment for brackish water recirculated aquaculture systems: reduction of organic load followed by methane production. Dissertation, Ben-Gurion University of the Negev

  • Mirzoyan N, Tal Y, Gross A (2010) Anaerobic digestion of sludge from intensive recirculating aquaculture systems: review. Aquaculture 306:1–4

    CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (eds) (2000) Wetlands. Wiley, New York

    Google Scholar 

  • Monsees H, Kloas W, Wuertz S (2017) Decoupled systems on trial: eliminating bottlenecks to improve aquaponic processes. PLoS One 12(9):e0183056. https://doi.org/10.1371/journal.pone.0183056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–183

    CAS  Google Scholar 

  • Nash CE (2001) The net-pen salmon farming industry in the Pacific Northwest, vol 46. United States Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC, Washington, DC 125 p

    Google Scholar 

  • Neto RM, Ostrensky A (2015) Nutrient load estimation in the waste of Nile Tilapia Oreochromis niloticus ( L.) reared in cages in tropical climate conditions. Aquac Res 46:1309–1322

    Google Scholar 

  • Ni SQ, Ni JY, Hu DL, Sung S (2012) Effect of organic matter on the performance of granular anammox process. Bioresour Technol 110:701–705

    CAS  PubMed  Google Scholar 

  • Nichols MA, Savidov NA (2012) Aquaponics: a nutrient and water efficient production system. Acta Hortic 947:129–132

    Google Scholar 

  • Noble C, Kadri S, Mitchell DF, Huntingford FA (2007) The impact of environmental variables on the feeding rhythms and daily feed intake of cage held Atlantic salmon parr (Salmo salar L.). Aquaculture 269:290–298

    Google Scholar 

  • Nogueira R, Melo LF, Purkhold U, Wuertz S, Wagner M (2002) Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Res 36(2):469–481

    CAS  PubMed  Google Scholar 

  • Nootong K, Powtongsook S (2012) Performance evaluation of the compact aquaculture system integrating submerged fibrous nitrifying biofilters. Songklanakarin J Sci Technol 34(1):53–59

    CAS  Google Scholar 

  • Novak JT, Sadler ME, Murthy SN (2003) Mechanisms of Floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Water Res 37:3136–3144

    CAS  PubMed  Google Scholar 

  • Nuwansi KKT, Verma AK, Prakash C, Tiwari VK, Chandrakant MH, Shete AP, Prabhath GPWA (2016) Effect of water flow rate on polyculture of koi carp (Cyprinus carpio var. koi) and goldfish (Carassius auratus) with water spinach (Ipomoea aquatica) in recirculating aquaponic system. Aquacult Int 24(1):385–393

    Google Scholar 

  • Oh S, Yoo Y, Young J, Kim I (2001) Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. J Biotechnol 92(1):1–8

    CAS  PubMed  Google Scholar 

  • Park EJ, Seo JK, Kim MR, Jung IH, Kim JY, Kim SK (2001) Salinity acclimation of immobilized freshwater denitrifiers. Aquac Eng 24:169–180

    Google Scholar 

  • Patterson RN, Watts KC (2003) Micro-particles in recirculating aquaculture systems: microscopic examination of particles. Aquac Eng 28(3–4):115–130

    Google Scholar 

  • Pedersen LF, Pedersen PB, Nielsen JL, Nielsen PH (2009) Peracetic acid degradation and effects on nitrification in recirculating aquaculture systems. Aquaculture 296:246–254

    CAS  Google Scholar 

  • Petrea SM, Cristea V, Dediu I, Contoman M, Ion SP, Mocanu MC, Antache A (2013) A study of nitrogen cycle in an integrated aquaponic system with different plant densities. Bull UASVM Animal Sci Biotechnol 70(1):55–64

    CAS  Google Scholar 

  • Phillips JB, Love NG (1998) Biological denitrification using upflow biofiltration in recirculating aquaculture systems: pilot-scale experience and implications for full-scale. In: Proceedings of the Second International Conference on Recirculating Aquaculture 1998. Virginia Polytechnic Institute and State University, Roanoke, pp 171–178

    Google Scholar 

  • Piedrahita RH, Zachritz WH, Fitzsimmons UK, Brckway C (1996) Evaluation and improvement of solids removal systems for aquaculture. In: Libey G, Timmons MB (eds) Successes and failures in commercial recirculating aquaculture, vol I. Northeast Regional and Agricultural Engineering Services (NRAES), Cornell Univ, NRAES - 98, pp 141–150

  • Pungrasmi W, Playchoom C, Powtongsook S (2013) Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system. J Environ Sci 25(8):1557–1564

    CAS  Google Scholar 

  • Ramanathan G, Sales CM, Shieh WK (2014) Simultaneous autotrophic denitrification and nitrification in a low-oxygen reaction environment. Water Sci Technol 70(4):729–735

    CAS  PubMed  Google Scholar 

  • Resh HM (2012) Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower. CRC Press, Boca Raton

    Google Scholar 

  • Rivett MO, Buss SR, Morgan P, Smith JW, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42(16):4215–4232

    CAS  PubMed  Google Scholar 

  • Rocca CD, Belgiorno V, Meriç S (2006) A heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem 41(5):1022–1028

    Google Scholar 

  • Russo RC (1985) Ammonia, nitrite, and nitrate. In: Rand GM, Petrocelli SR (eds) Fundamentals of aquatic toxicology and chemistry. Hemisphere Publishing Corp, Washington, DC, pp 455–471

    Google Scholar 

  • Ryan PB, Sandra LM, Ryan JN (2017) Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of Ammonia-oxidizing Archea and Comammox Nitrospira. Front Microbiol 8:101. https://doi.org/10.3389/fmicb.2017.00101

    Article  Google Scholar 

  • Sahinkaya E, Kilic A, Duydulu B (2014) Pilot and full-scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent. Water Res 60:210–217

    CAS  PubMed  Google Scholar 

  • Sailing WJB, Westerman PW, Losordo TM (2007) Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations. Aquac Eng 37:222–233

    Google Scholar 

  • Saufie S, Estim A, Tamin M, Harun A, Obong S, Mustafa S (2015) Growth performance of tomato plant and genetically improved farmed Tilapia in combined aquaponic systems. Asian J Agric Res 9(3):95–103. https://doi.org/10.3923/ajar.2015.95.103

    Article  CAS  Google Scholar 

  • Sauthier N, Grasmick A, Blancheton JP (1998) Biological denitrification applied to a marine closed aquaculture system. Water Res 32:1932–1938

    CAS  Google Scholar 

  • Schmitz-Schlang O, Moskwa G (1992) Design characteristics and production capacity of a closed recirculating fish culture system with continuous denitrification. In: Moav B, Hilge V, Rosenthal H (eds) Progress in aquaculture research, vol 17. Europ. Aquacult Soc, Belgium, pp 79–90

  • Schram E, Roques JAC, Abbink W, Yokohama Y, Spanings T, de Vries P, Bierman S, van de Vis H, Flik G (2014) The impact of elevated water nitrate concentration on physiology, growth and feed intake of African catfish Clarias Gariepinus (Burchell 1822). Aquac Res 45(9):1499–1511

    CAS  Google Scholar 

  • Schuster C, Stelz H (1998) Reduction in the make-up water in semi-closed recirculating aquaculture systems. Aquac Eng 17(3):167–174

    Google Scholar 

  • Scott KR, Allard L (1984) A four tank water recirculation system with a hydrocyclone prefilter and a single water reconditioning unit. Prog Fish Cult 46(1984):254–261

    Google Scholar 

  • Seawright DE, Stickney RR, Walker RB (1998) Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture 160:215–237

    CAS  Google Scholar 

  • Shnel N, Barak Y, Ezer T, Dafni Z, van Rijn J (2002) Design and performance of a zero-discharge tilapia recirculating system. Aquac Eng 26:191–203

    Google Scholar 

  • Sikawa DC, Yakupitiyage A (2010) The hydroponic production of lettuce (Lactuca sativa L) by using hybrid catfish (Clarias macrocephalus × C. gariepinus) pond water: potentials and constraints. Agric Water Manag 97:1317–1325

    Google Scholar 

  • Singer A, Parnes S, Gross A, Sagi A, Brenner A (2008) A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture. Aquac Eng 39(2–3):72–77

    Google Scholar 

  • Soares MI, Brenner A, Yevzori A, Messalem R, Leroux Y, Abeliovich A (2000) Denitrification of groundwater: pilot-plant testing of cotton-packed bioreactor and post-microfiltration. Water Sci Technol 42(1–2):353–359

    CAS  Google Scholar 

  • Sowers KR (2000) Methanogenesis. In: Lederberg J, Alexander M, Bloom B, Hopwood D, Hull R, Iglewski B, Laskin A, Oliver S, Schaechter M, Summers W (eds) Encyclopedia of microbiology. Academic Press Inc., New York, pp 204–226

    Google Scholar 

  • Stief P (2001) Influence of sediment and pore-water composition on nitrite accumulation in a nitrate-perfused freshwater sediment. Water Res 35(12):2811–2818

    CAS  PubMed  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, Van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    CAS  PubMed  Google Scholar 

  • Subramani A, Jacangelo, JG (2015) Emerging desalination technologies for water treatment: a critical review. Water Res. 75:164–87. https://doi.org/10.1016/j.watres.2015.02.032

    CAS  PubMed  Google Scholar 

  • Suhl J, Dannehl D, Kloas W, Baganz D, Jobs S, Scheibe G, Schmidt U (2016) Advanced aquaponics: evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric Water Manag 178:335–344

    Google Scholar 

  • Suhr K, Pedersen PB (2010) Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS. Aquac Eng 42(1):31–37. https://doi.org/10.1016/j.aquaeng.2009.10.001

    Article  Google Scholar 

  • Suhr KI, Pedersen LF, Nielsen JL (2014) End-of-pipe single-sludge denitrification in pilot-scale recirculating aquaculture systems. Aquac Eng 62:28–35

    Google Scholar 

  • Summerfelt ST (2006) Design and management of conventional fluidized-sand biofilters. Aquac Eng 34:275–302

    Google Scholar 

  • Summerfelt ST, Sharrer MJ (2004) Design implication of carbon dioxide production within biofilters contained in recirculating salmonid culture systems. Aquac Eng 32(1):171–182

    Google Scholar 

  • Tal Y, Schreier HJ (2004) Dissimilatory sulfate reduction as a process to promote denitrification in marine recirculating aquaculture systems. US Patent 7462284B2, 30th Jan 2004

  • Tal Y, Watts JE, Schreier SB, Sowers KR, Schreier HJ (2003) Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system. Aquaculture 215(1):187–202

    CAS  Google Scholar 

  • Tangendjaja B (2015) Quality control of feed ingredients for aquaculture. In: Feed and feeding practices in aquaculture. Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100506-4.00006-4

    Google Scholar 

  • Timmons M, Ebeling J (2007) Recirculating aquaculture. NRAC Publication No. 01-007. Cayuga Aqua Ventures, Ithaca

    Google Scholar 

  • Timmons MB, Ebeling JM, Wheaton FW, Summerfelt ST, Vinci BJ (2002) Recirculating aquaculture systems, 2nd edn. Cayuga Aqua Ventures, Ithaca, NY

    Google Scholar 

  • Todd GC (2008) A large scale evaluation of commercially available biological filters for recirculating aquaculture systems. Thesis, North Carolina State University, Raleigh, North Carolina

  • Tomasso JR (1994) Toxicity of nitrogenous wastes to aquaculture animals. Rev Fish Sci 2:291–314

    Google Scholar 

  • Tsukuda S, Christianson L, Kolb A, Saito K, Summerfelt S (2015) Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters. Aquac Eng 64:49–59

    Google Scholar 

  • Turcios AE, Papenbrock J (2014) Sustainable Treatment of Aquaculture Effluents-What Can We Learn from the Past for the Future? Sustainability 6(2):836–56. https://doi.org/10.3390/su6020836

    Google Scholar 

  • Tucker CS, Hargreaves JA (2009) Environmental best management practices for aquaculture. Aquacult Int 17:301–302

  • Tyson RV, Hochmuth RC, Lamb EM, Hochmuth GJ, Sweat MS (2001) A decade of change in Florida’s greenhouse vegetable industry. Proc Fla State Hort Soc 114:280–283

    Google Scholar 

  • EPA (Environmental Protection Agency) Research Outlook (1984) U.S. Environmental Protection Agency, Washington D.C, EPA/600/9-84/004 (NTIS PB84194562), 1984 

  • United States Environmental Protection Agency (US-EPA) (1984) Methods for the chemical analysis of water and wastewater, EPA-600/4-79-020. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support laboratory, Cincinnati

    Google Scholar 

  • van de Graaf AA, Mulder A, de Bruijn P, Jetten MSM, Robertson LA, Kuenen JG (1996) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251

    Google Scholar 

  • van Lier JB, Mahmoud N, Zeeman G (2008) Anaerobic wastewater treatment. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London, pp 401–442

    Google Scholar 

  • van Rijn J (1996) The potential for integrated biological treatment systems in recirculating fish culture—a review. Aquaculture 139:181–201

    Google Scholar 

  • van Rijn J (2013) Waste treatment in recirculating aquaculture systems. Aquac Eng 53:49–56

    Google Scholar 

  • van Rijn J, Barak Y (1998) Denitrification in recirculating aquaculture systems: from biochemistry to biofilter. Paper Presented at the 2nd International Conference on Recirculating Aquaculture, Roanoke, Viginia, Virginia - Tech, 16–19 July 1998

  • van Rijn J, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: theory and applications. Aquac Eng 34(3):364–376

    Google Scholar 

  • Vermeulen T, Kamstra A (2013) The need for systems design for robust aquaponic systems in the urban environment. Acta Horticulturae 1004:71–78

    Google Scholar 

  • Verstraete W, Schryver P (2009) Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresour Technol 100(3):1162–1167

    PubMed  Google Scholar 

  • Villarroel M, Junge R, Komives T, König B, Plaza I, Bittsánszky A, Joly A (2016) Survey of aquaponics in Europe. Water 8(10):468. https://doi.org/10.3390/w8100468

    Article  Google Scholar 

  • Wahyuningsih S, Effendi H, Wardiatno Y (2015) Nitrogen removal of aquaculture wastewater in aquaponic recirculation system. AACL Bioflux 8(4):491–499

    Google Scholar 

  • Wang J, Chu L (2016) Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol Adv 34:1103–1112

    CAS  PubMed  Google Scholar 

  • Wang W, Richardson AR, Martens-Habbena W, Stahl DA, Fang FC, Hansen EJ (2008) Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J Bacteriol 190(23):7762–7772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warneke S, Schipper LA, Bruesewitz DA, McDonald I, Cameron S (2011) Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecol Eng 37:511–522

    Google Scholar 

  • Wheaton FW, Hochheiner JN, Kaiser GE (1991) Fixed film nitrification filters for aquaculture intensive recirculating fish production facility. In: Techniques for Modern Aquaculture. American Society of Agricultural Engineer, St. Joseph, pp 326–334

    Google Scholar 

  • Wheaton FW, Hochheimer JN, Kaiser GE, Malone RF, Krones MJ, Libey GS, Easter CC (1994) Nitrification filter design methods. In: Timmons MB, Losordo TM (eds) Aquaculture water reuse systems: engineering design and management. Elsevier, Amsterdam, pp 101–171

    Google Scholar 

  • White P (2013) Environmental consequences of poor feed quality and feed management. In: Hasan MR, New MB (eds) On-farm feeding and feed management in aquaculture, FAO Fisheries and Aquaculture Technical Paper No. 583. FAO, Rome, pp 553–564

    Google Scholar 

  • Xu Z, Shao L, Yin H, Chu H, Yao Y (2009) Biological denitrification using corncobs as a carbon source and biofilm carrier. Water Environ Res 81:242–247

    CAS  PubMed  Google Scholar 

  • Xu G, Peng J, Feng C, Fang F, Chen S, Xu Y, Wang X (2015) Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis. Appl Microbiol Biotechnol 99(15):6527–6536

    CAS  PubMed  Google Scholar 

  • Yogev U, Barnes A, Gross A (2016) Nutrients and energy balance analysis for a conceptual model of a three loops off grid, aquaponics. Water 8:589. https://doi.org/10.3390/w8120589

    Article  CAS  Google Scholar 

  • Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Annu Rev Mar Sci 3:197–225

    Google Scholar 

  • Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, Zhang Z (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. J Environ Sci 23(11):1761–1769

    CAS  Google Scholar 

  • Zhu S, Chen S (1999) An experimental study on nitrification biofilm performances using a series reactor system. Aquac Eng 20(4):245–259

    Google Scholar 

  • Zhu S, Chen S (2001) Effects of organic carbon on nitrification rate in fixed film biofilters. Aquac Eng 25(1):1–11

    Google Scholar 

  • Zhu S, Chen S (2002) The impact of temperature on nitrification rate in fixed film biofilters. Aquac Eng 26(4):221–237

    Google Scholar 

  • Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y (2016) Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour Technol 210:81–87

    CAS  PubMed  Google Scholar 

Download references

Funding

This review is a product of the STRECAFISH project, “Strengthening regional capacity in research and training in fisheries and aquaculture for improved food security and livelihoods in Eastern Africa.” The authors are grateful to the Austrian Partnership Programme in Higher Education and Research for Development (APPEAR), a program of the Austrian Development Cooperation (ADC) and implemented by the Austrian Agency for International Cooperation in Education and Research (OeAD) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zipporah Moraa Gichana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gichana, Z.M., Liti, D., Waidbacher, H. et al. Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation. Aquacult Int 26, 1541–1572 (2018). https://doi.org/10.1007/s10499-018-0303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-018-0303-x

Keywords

Navigation