Skip to main content

Advertisement

Log in

Economic evaluation of the commercial production between Brazilian samphire and whiteleg shrimp in an aquaponics system

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The implementation of aquaponics systems has significantly increased in the last two decades, and several studies have reported on the technical, socioeconomic, and environmental ramifications in order to achieve sustainability in food production. The present study, however, aimed to perform a commercial-scale economic evaluation, using a model marine aquaponics production system with the halophyte Sarcocornia ambigua and the shrimp Litopenaeus vannamei cultivated in nutrient film technology (NFT) and biofloc technology (BFT) systems, respectively. To calculate phytotechnical and zootechnical indexes, we used recent studies available in the literature. Indicators of operational costs (total cost of production—TCP) and financial viability were calculated based on a cash flow horizon of 10 years. The proposed study estimated an initial investment of US$ 474,253.07, with annual TCPs around US$ 192,220.50, US$ 247,740.52, and US$ 223,482.65 years 1, 2 to 9, and 10, the different periods studied. Within these respective periods, the annual production of halophyte was 17,017, 23,286, and 18,808 kg, while marine shrimp production was 10,659, 14,586, and 11,781 kg. Based on these annual production numbers, the TCPs were US$ 4.75, US$ 4.03, and US$ 4.67 kg−1 for halophyte and US$ 10.45, US$ 14.43, and US$ 11.52 kg−1 for shrimp. Three sales prices were estimated per kilogram of halophyte produced and one fixed price per kilogram of shrimp produced. Only the highest selling price showed favorable indexes after testing sensitivities. Based on the above parameters, halophyte TCP was below sales value, i.e., reference price, with the possibility of increasing the price to “premium” level, indicating that this marine aquaponics production system was feasible for implementation in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Source: http://www.bcb.gov.br/htms/selic/selicdiarios.asp, as assessed on March 1, 2017.

References

  • Adams JB, Bate GC (1994) The effect of salinity and inundation on the estuarine macrophyte Sarcocornia perennis (Mill.) A. J. Scott. Aquat Bot 47:341–348

    Article  Google Scholar 

  • Avnimelech Y (2006) Bio-filters: the need for an new comprehensive approach. Aquac Eng 34(3):172–178

    Article  Google Scholar 

  • Avnimelech Y (2009) Biofloc technology—a practical guide book. 2ª Ed. The World Aquaculture Society

  • Bailey, D.S., J.E. Rakocy, W.M. Cole, K.A. Shultz. 1997 Economic analysis of a commercial-scale aquaponic system for the production of tilapia and lettuce. In: Tilapia aquaculture: Proceedings of the Fourth International Symposium on Tilapia in Aquaculture, Orlando, Florida, pp. 603–612

  • Bosma RH, Lacambra L, Landstra Y, Poulie J, Schwaner MJ, Yin Y (2017) The financial feasibility of producing fish and vegetables through aquaponics. Aquac Eng 78:146–154

    Article  Google Scholar 

  • Boxmann SE, Kruglick A, McCarthy B, Brennan NP, Nystrom M, Ergas SJ, Hanson T, Main KL, Trotz MA (2015) Performance evaluation of a commercial land-based integrated multi-trophic aquaculture system using constructed wetlands and geotextile bags for solids treatment. Aquac Eng 69:23–36

    Article  Google Scholar 

  • Boxmann SE, Nystrom M, Capodice JC, Ergas SJ, Main KL, Trotz MA (2016) Effect of support medium, hydraulic loading rate and plant density on water quality and growth of halophytes in marine aquaponic systems. Aquac Res:1–15

  • Brown JJ, Glenn EP, Fitzsimmons KM, Smith SE (1999) Halophytes for the treatment of saline aquaculture effluent. Aquaculture 175:255–268

    Article  CAS  Google Scholar 

  • Bunting SW, Shpigel M (2009) Evaluating the economic potential of horizontally integrated land-based marine aquaculture. Aquaculture 294:43–51

    Article  Google Scholar 

  • Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC (2004) The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture 232(1–4):525–537

    Article  Google Scholar 

  • Buzby KM, Lin LS (2014) Scaling aquaponic systems: balancing plant uptake with fish output. Aquac Eng 63:39–44

    Article  Google Scholar 

  • Castellani D, Camargo AFM, Abimorad EG (2009) Aquaponia: Aproveitamento do efluente do berçário secundário do Camarão-da-Amazônia (Macrobrachium amazonicum) para produção de alface (Lactuca sativa) e agrião (Roripa nasturtium aquaticum) hidropônicos. Bioikos 23(2):67–75

    Google Scholar 

  • Castilho-Barros L, Barreto OJS, Henriques MB (2014) The economic viability for the production of live baits of white shrimp (Litopenaeus schmitti) in recirculation culture system. Aquac Int 22:1925–1935

    Article  Google Scholar 

  • Chamorro-Legarda, E. 2015 Berçário de camarão em sistema de bioflocos: Densidade de estocagem e substrato artificial. Florianópolis, 61f. (Dissertação de mestrado, Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina)

  • Chamorro-Legarda, E.; Mendes, L.G.; Bezerra, G.G.O.; Espirito Santo, C.M.; Seiffert, W.Q.; Vieira, F.N. 2016 Açúcar refinado como fonte de carbono no berçário de camarões cultivados em sistema de bioflocos. Boletim do Instituto de Pesca, São Paulo, 42(2):443–448

  • Correia ES, Wilkenfeld JS, Morris TC, Wei L, Prangnell DI, Samocha TM (2014) Intensive nursery production of the pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquac Eng 59:48–54

    Article  Google Scholar 

  • Crab R, Defoirdt T, Bossier P, Verstraete W (2012) Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356-357:351–356

    Article  Google Scholar 

  • D'Oca MGM, Moron-Villarreyes JA, Lemoes JS, Costa CSB (2012) Fatty acids composition in seeds of the South American glasswort Sarcocornia ambigua. An Acad Bras Ciênc 84(3):865–870

    Article  PubMed  CAS  Google Scholar 

  • Ebeling JM, Timmons MB, Bisogni JJ (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257:346–358

    Article  Google Scholar 

  • Engle, C.R. 2015 Economics of aquaponics. Southern Regional Aquaculture Center (SRAC), Report number 5006

  • Essaidi I, Brahmi Z, Snoussi A, Koubaier HBH, Casabianca H, Abe N, Omri AE, Chaabouni MM, Bouzouita N (2013) Phytochemical investigation of Tunisian S. herbacea antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control 32:125–133

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization) (2014) Small-scale aquaponic food production: integrated fish and plant farming, Roma, p 266

  • Feng L, Ji B, Su B (2013) Economic value and exploiting approaches of sea asparagus a seawater-irrigated vegetables. Agric Sci 4:40–44

    Google Scholar 

  • Fóes GK, Gaona CA, Poersch LH 2012 Cultivo em bioflocos (BFT) é eficaz na produção intensiva de camarões. Visão Agrícola (USP / ESALQ). p. 28-32

  • Fróes C, Fóes G, Krummenauer D, Poersch LH, Wasielesky W Jr (2013) Densidade de estocagem na engorda de camarão-branco cultivado em sistema de biofloco. Pesq Agrop Brasileira 4(8):878–884

    Article  Google Scholar 

  • Gengmao Z, Mehta SK, Zhaopu L (2010) Use of saline aquaculture wastewater to irrigate salt-tolerant Jerusalem artichoke and sunflower in semiarid coastal zones of China. Agric Water Manag 97:1987–1993

    Article  Google Scholar 

  • Henriques, M.B.; Machado, I.C.; Fagundes, L. 2010 Análise econômica comparativa dos sistemas de cultivo integral e de “Engorda” da ostra Crassostrea spp, no estuário de Cananéia, São Paulo, Brasil. Boletim do Instituto de Pesca, São Paulo, 36(4):307–316

  • Hu Z, Lee JW, Chandran K, Kim S, Khanal SK (2012) Nitrous oxide (N2O) emission from aquaculture: a review. Environmental Science Technology 46(12):6470–6480

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Lee JW, Chandran K, Kim S, Brotto AC, Khanal SK (2015) Effect of plant species on nitrogen recovery in aquaponics. Bioresour Technol 188:92–98

    Article  PubMed  CAS  Google Scholar 

  • Junge R, König B, Villarroel M, Komives T, Jijakli MH (2017) Strategic points in aquaponics. Water 9:182

    Article  Google Scholar 

  • Kim YA, Kong CS, Lee JI, Kim H, Park HY, Lee HS, Lee C, Seo Y (2012) Evaluation of novel antioxidant triterpenoid saponins from the halophyte Salicornia herbácea. BioorgMed Chem Lett 22:4318–4322

    Article  CAS  Google Scholar 

  • Kodama G, Annunciação WF, Sanches EG, Gomes CHAM, Tsuzuki MY (2011) Viabilidade econômica do cultivo do peixe-palhaço, Amphiprion ocellaris, em sistema de recirculação. Bol Inst Pesca 37(1):61–72

    Google Scholar 

  • Krummenauer D, Peixoto S, Cavalli RO, Poersch LH, Wasielesky W Jr (2011) Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in Southern Brazil at different stocking densities. J World Aquacult Soc 42(5):726–733

    Article  Google Scholar 

  • Lennard WA, Leonard BV (2006) A comparison of three hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac Int 14:539–550

    Article  Google Scholar 

  • Love DC, Fry JP, Li X, Hill ES, Genello L, Semmens K, Thompson RE (2015) Commercial aquaponics production and profitability: findings from na international survey. Aquaculture 435:67–74

    Article  Google Scholar 

  • Mariscal-Lagarda MM, Páez-Osuna F, Esquer-Méndez JL, Guerrero-Monroy I, Vivar AR, Félix-Gastelum R (2012) Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low groundwater: management and production. Aquaculture 366-367:76–84

    Article  CAS  Google Scholar 

  • Martin NB, Serra R, Oliveira MDM, Angelo JA, Okawa H (1998) Sistema integrado de custos agropecuários – CUSTAGRI. Informações Econômicas 28(1):7–28

    Google Scholar 

  • Matsunaga M, Bemelmans PF, Toledo PEN, Dulley RD, Okawa H, Peroso IA (1976) Metodologia de custo de produção utilizado pelo IEA. Agricultura em São Paulo 23(1):123–139

    Google Scholar 

  • Monsees H, Keitel J, Paul M, Kloas W, Wurtez S (2017) Potential of aquacultural sludge treatments of aquaponics: evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquac Environ Interact 9:9–18

    Article  Google Scholar 

  • Moroyoqui-Rojo L, Flores-Verdugo FJ, Hernández-Carmona G, Casa-Valdes M, Cervantes-Duarte R, Nava-Sánches EH (2012) Nutrient removal using two species of mangrove (rhizophora mangle and Laguncularia racemosa) in experimental shrimp (Litopenaeus vannamei) culture ponds. Ciencias Marinas 38(2):333–346

    Article  CAS  Google Scholar 

  • Pinheiro IC, Arantes R, Espirito Santo CM, Vieira FN, Lapa KR, Gonzaga LV, Fett R, Barcelos-Oliveira JL, Seiffert WQ (2017) Production of the halophyte Sarcocornia ambigua and Pacific white shrimp in an aquaponic system with biofloc technology. Ecol Eng 100:261–267

    Article  Google Scholar 

  • Porto ER, Amorim MCC, Dutra MT, Paulino RV, Brito LT, Matos ANB (2006) Rendimento da Atriplex numulária irrigada com efluentes da criação de tilápia em rejeito da dessalinização de água. Revista Brasileira de Engenharia Agrícola e Ambiental 10(1):97–103

    Article  Google Scholar 

  • Quintã R, Santos R, Thomas DNN, Le Vay L (2015) Growth and nitrogen uptake by Salicornia europaea and Aster tripolium in nutrient conditions typical of aquaculture wastewater. Chemosphere 120:414–421

    Article  PubMed  CAS  Google Scholar 

  • Rakocy JE (2012) Aquaponics—integrating fish and plant culture. In: Tidwell, J,H, (Org.). Aquaculture Production Systems, Wiley-Blackwell, Oxford, p. 343–386

  • Rego MAS, Sabbag OJ, Soares R, Peixoto S (2017) Financial viability of inserting the biofloc technology in a marine shrimp Litopenaeus vannamei farm: a case study in the state of Pernambuco, Brazil. Aquac Int 25:473–483

    Article  Google Scholar 

  • Rupasinghe JW, Kennedy JOS (2010) Economic benefits of integrating a hydroponic lettuce system into a barramundi fish production system. Aquac Econ Manag 14:81–96

    Article  Google Scholar 

  • Sabbag OJ, Rozales RR, Tarsitana MAA, Silveira AN (2007) Análise econômica da produção de tilápias (Oreochromis niloticus) em um modelo de propriedade assoaciativa em Ilha Solteira/SP. Custo e Agronegócio 3(2):86–100

    Google Scholar 

  • Samocha TM, Lawrence AL, Collins CA, Castille FL, Bray WA, Davies CJ, Lee PG, Wood GF (2004) Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Aquaculture 15:1–19

    Google Scholar 

  • Sanches EG, Henriques MB, Fagundes L, Silva AA (2006) Viabilidade econômica do cultivo da garoupa-verdadeira (Epinephelus marginatus) em tanques rede, região sudeste do Brasil. Informações Econômicas 36(8):5–25

    Google Scholar 

  • Sanches EG, Tosta GAM, SOUZA-Filho JJ (2013) Viabilidade econômica da produção de formas jovens de bijupirá (Rachycentron canadum). Bol Inst Pesca 39(1):15–26

    Google Scholar 

  • Sanches EG, Silva FC, Ramos APFD (2014) Viabilidade econômica do cultivo de robalo-flecha em empreendimentos de carcinicultura no nordeste do Brasil. Bol Inst Pesca 40(4):577–588

    Google Scholar 

  • Savidov N, Brooks AB (2004) Evaluation and development of aquaponics production and product market capabilities in Alberta. Crop Diversification Centre South, Alberta Agriculture, Food and Rural Development

  • Schveitzer R, Arantes R, Baloi MF, Costódio PFS, Arana LV, Seiffert WQ, Andreatta ER (2013) Use of artificial substrate in the culture of Litopenaeus vannamei (biofloc system) at different stocking densities: effects on microbial activity, water quality and production rates. Aquaculture Engineering 54:93–103

    Article  Google Scholar 

  • Shang YC (1990) Aquaculture economics analysis: an introduction. In: Sandifer PA (ed) Advances in world aquaculture. The World Aquaculture Society, Baton Rouge, p 211

    Google Scholar 

  • Shang YC, Leung P, Ling BH (1998) Comparative economics of shrimp farming in Asia. Aquaculture 164:183–200

    Article  Google Scholar 

  • Silva E, Silva J, Ferreira F, Soares M, Soares R, Peixoto S (2015) Influence of stocking density on the zootechnical performance of Litopenaeus vannamei during the nursery phase in a biofloc system. Boletim do Instituto de Pesca, 41(esp.):777–783

  • Silva HV (2016) Efeito do estresse hídrico na produção de compostos bioativos de Sarcocornia ambigua em sistema aquapônico com Litopenaeus vannamei. Florianópolis, 59f. (Dissertação de mestrado, Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina)

  • Soares-Neto JR (2017) Cultivo de Sarcocornia ambigua em aquaponia com Litopenaeus vannamei em bioflocos com diferentes áreas de bancada hidropônica. Florianópolis, 47f. (Dissertação de mestrado, Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina)

  • Tokunaga K, Tamaru C, Ako H, Leung P (2015) Economics of small-scale commercial aquaponics in Hawai’i. J World Aquacult Soc 46(1):20–32

    Article  Google Scholar 

  • Troyo-Diéguez E, Ortega-Rubio A, Maya Y, León JL (1994) The effect of environmental conditions on the growth and development of the oilseed halophyte Salicornia bigelovii Torr. in arid Baja California Sur, México. J Arid Environ 28:207–213

    Article  Google Scholar 

  • Valente LMP, Linares F, Villanueva JLR, Silva JMG, Espe M, Escorcio C, Pires MA, Saavedra MJ, Borges P, Medale F, Alvarez-Blazquez B, Peleteiro JB (2011) Dietary protein source or energy levels have no major impact on growth performance, nutrient utilisation or flesh fatty acids composition of marketsized Senegalese sole. Aquaculture 318(1–2):128–137

    Article  CAS  Google Scholar 

  • Valenti WC, Kimpara JM, Zajdband AD (2010) Métodos para medir a sustentabilidade na aquicultura. Revista Panorama da Aquicultura 119:28–33

    Google Scholar 

  • van Wyk P (1999) Nutrition and feeding of Litopenaeus vannamei in intensive culture systems. In: Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Florida, p 220

    Google Scholar 

  • Ventura Y, Sagi M (2013) Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ Exp Bot 92:144–153

    Article  Google Scholar 

  • Ventura Y, Wuddineh WA, Shpigel M, Samocha TM, Klim BC, Cohen S, Shemer Z, Santos R, Sagi M (2011) Effects of days length on flowering and yield production of Salicornia and Sarcocornia species. Sci Hortic 130:510–516

    Article  Google Scholar 

  • Wang X, Zhang M, Zhao Y, Wang H, Liu T, Xin Z (2013) Pentadecyl ferulate, a potent antioxidant and antiproliferative agent from the halophyte Salicornia herbacea. Food Chem 141:2066–2074

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Marine Aquaponics Studies Group of the Marine Shrimp Laboratory of the Federal University of Santa Catarina.

Funding

Financing agency—CNPq-CAPES - Universal 2015

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Castilho-Barros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castilho-Barros, L., Almeida, F.H., Henriques, M.B. et al. Economic evaluation of the commercial production between Brazilian samphire and whiteleg shrimp in an aquaponics system. Aquacult Int 26, 1187–1206 (2018). https://doi.org/10.1007/s10499-018-0277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-018-0277-8

Keywords

Navigation