Skip to main content

Advertisement

Log in

Bacteriophage therapy as a bacterial control strategy in aquaculture

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Aquaculture is a sector of economic relevance worldwide. Bacterial infections have been recognized as an important limitation to aquaculture production and trade. Microbial infection in aquaculture derived products has been prevented by antibiotic administration with limited success. Recently, drug-resistant bacteria have become a global problem, urging for the prompt development of alternative control strategies in order to improve food quality and safety. The alternative approach of using lytic phages or their products, as bioagents for the treatment or prophylaxis of bacterial infectious diseases, has gained interest. This review intends to emphasize the need of further research in the field of the application of phage therapy in aquaculture and highlights the use of phages in invertebrates as an antimicrobial strategy pointing critical aspects from the economic, environmental and public health perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackermann HW, Dauguet C, Paterson WD et al (1985) Aeromonas bacteriophages: reexamination and classification. Ann Inst Pasteur Vir 136(2):175–199

    Google Scholar 

  • Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36(6):697–705

    PubMed  Google Scholar 

  • Albert M, Vannesson C, Schwartzbrod L (1995) Recovery of somatic coliphages in shellfish. Water Sci Technol 31(5–6):453–456

    Google Scholar 

  • Almeida A, Cunha A, Gomes NC et al (2009) Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar Drugs 7(3):268–313

    PubMed  CAS  Google Scholar 

  • Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43(2):119–124

    PubMed  CAS  Google Scholar 

  • Bai F, Han Y, Chen J et al (2008) Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture 274(1):36–40

    CAS  Google Scholar 

  • Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 5(7):268–271

    PubMed  CAS  Google Scholar 

  • Beril C, Crance JM, Leguyader F et al (1996) Study of viral and bacterial indicators in cockles and mussels. Mar Pollut Bull 32(5):404–409

    CAS  Google Scholar 

  • Berthe FCJ (ed) (2005) Diseases in mollusc hatcheries and their paradox in health management. Fish Health Section, Asian Fisheries Society, Manila

    Google Scholar 

  • Bricknell I, Dalmo RA (2005) The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immun 19(5):457–472

    CAS  Google Scholar 

  • Brüsso H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602

    Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144

    PubMed  CAS  Google Scholar 

  • Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47:267–274

    CAS  Google Scholar 

  • Carrias A, Welch T, Waldbieser G et al (2011) Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri. Virol J 8(1):6

    PubMed  CAS  Google Scholar 

  • Chai T-J, Han T-J, Cockey RR (1994) Microbiological quality of shellfish-growing waters in Chesapeake Bay. J Food Protect 57(3):229–234

    Google Scholar 

  • Chrisolite B, Thiyagarajan S, Alavandi SV et al (2008) Distribution of luminescent Vibrio harveyi and their bacteriophages in a commercial shrimp hatchery in South India. Aquaculture 275(1–4):13–19

    Google Scholar 

  • Chung H, Jaykus LA, Lovelace G et al (1998) Bacteriophages and bacteria as indicators of enteric viruses in oysters and their harvest waters. Water Sci Technol 38(12):37–44

    CAS  Google Scholar 

  • Crothers-Stomps C, Høj L, Bourne DG et al (2010) Isolation of lytic bacteriophage against Vibrio harveyi. J Appl Microbiol 108(5):1744–1750

    PubMed  CAS  Google Scholar 

  • Daniel P (2009) Available chemotherapy in Mediterranean fish farming: use and needs. CIHEAM (Centre International de Hautes Etudes Agronomiques Méditerranéennes)/FAO (food and agriculture organization of the United Nations), Zaragoza

  • Defoirdt T, Boon N, Bossier P et al (2004) Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240(1–4):69–88

    Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P et al (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25(10):472–479

    PubMed  CAS  Google Scholar 

  • Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14(3):251–258

    PubMed  Google Scholar 

  • Doré WJ, Henshilwood K, Lees DN (2000) Evaluation of F-specific RNA bacteriophage as a candidate human enteric virus indicator for bivalve molluscan shellfish. Appl Environ Microbiol 66(4):1280–1285

    PubMed  Google Scholar 

  • Doré WJ, Mackie M, Lees DN (2003) Levels of male-specific RNA bacteriophage and Escherichia coli in molluscan bivalve shellfish from commercial harvesting areas. Lett Appl Microbiol 36(2):92–96

    PubMed  Google Scholar 

  • Efrony R, Loya Y, Bacharach E et al (2007) Phage therapy of coral disease. Coral Reefs 26(1):7–13

    Google Scholar 

  • Eldar A, Ghittino C, Asanta L et al (1996) Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Curr Microbiol 32(2):85–88

    PubMed  CAS  Google Scholar 

  • Entenza JM, Loeffler JM, Grandgirard D et al (2005) Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob Agents Chemother 49:4789–4792

    PubMed  CAS  Google Scholar 

  • FAO (2006) The state of world aquaculture. Fisheries Technical Paper 500. FAO Fisheries Department, Rome

  • FAO (2009) The state of world fisheries and aquaculture—2008. FAO Fisheries and Aquaculture Department, Rome

    Google Scholar 

  • Farzanfar A (2006) The use of probiotics in shrimp aquaculture. FEMS Immunol Med Mic 48(2):149–158

    CAS  Google Scholar 

  • Fauconneau B (2002) Health value and safety quality of aquaculture products. Rev Med Vet 153(5):331–336

    Google Scholar 

  • Flegel TW, Pasharawipas T, Owens L et al (2005) Evidence for phage-induced virulence in the shrimp pathogen Vibrio harveyi. In: Walker P, Lester R, Bondad-Reantaso MG (eds) Diseases in Asian Aquaculture V. Fish Health Section, Asian Fisheries Society, Manila, pp 329–337

  • Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169(1–2):111–120

    Google Scholar 

  • Giraud E, Douet D-G, Le Bris H et al (2006) Survey of antibiotic resistance in an integrated marine aquaculture system under oxolinic acid treatment. FEMS Microbiol Ecol 55(3):439–448

    PubMed  CAS  Google Scholar 

  • Girón-Pérez MI (2010) Relationships between innate immunity in bivalve molluscs and environmental pollution. Invertebrate Surviv J 7(2):149–156

    Google Scholar 

  • Grabow W (2001) Bacteriophages: update on application as models for viruses in water. Water SA 27(2):251–268

    Google Scholar 

  • Grandgirard D, Loeffler JM, Fischetti VA et al (2008) Phage lytic enzyme cpl-1 for antibacterial therapy in experimental pneumococcal meningitis. J Infect Dis 197:1519–1522

    PubMed  CAS  Google Scholar 

  • Griffiths AJF, Gelbart WM, Miller JH et al (1999) Modern genetic analysis. W. H. Freeman, New York

    Google Scholar 

  • Hektoen H, Berge JA, Hormazabal V et al (1995) Persistence of antibacterial agents in marine sediments. Aquaculture 133(3–4):175–184

    CAS  Google Scholar 

  • Helm MM, Bourne N (2004) Hatchery culture of bivalves—A practical manual. FAO of the United Nations, Rome

    Google Scholar 

  • Hermoso JA, García JL, García P (2007) Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 10(5):461–472

    PubMed  CAS  Google Scholar 

  • Hernroth BE, Conden-Hansson A-C, Rehnstam-Holm A-S et al (2002) Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, Mytilus edulis: the first Scandinavian report. Appl Environ Microbiol 68(9):4523–4533

    PubMed  CAS  Google Scholar 

  • Hidaka T, Kawaguchi T (1986) Properties of some Aeromonas salmonicida virulent phages in Japan. Memoirs of Faculty of Fisheries—Kagoshima University 35:39–52

    Google Scholar 

  • Holmström K, Gräslund S, Wahlström A et al (2003) Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int J Food Sci Technol 38(3):255–266

    Google Scholar 

  • Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14(11–12):536–540

    PubMed  CAS  Google Scholar 

  • Howgate P, Lima dos Santos C, Shehadeh Z (1997) Safety of food products from aquaculture—review of the state of world aquaculture. FAO fisheries circular, Rome, pp 67–74

    Google Scholar 

  • Hsu CH, Lo CY, Liu JK et al (2000) Control of the eel (Anguilla japonica) pathogens, Aeromonas hydrophila and Edwardsiella tarda, by bacteriophages. J Fisheries Soc Taiwan 27(1):21–31

    CAS  Google Scholar 

  • Imbeault S, Parent S, Lagacé M et al (2006) Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed Brook Trout. J Aquat Anim Health 18(3):203–214

    Google Scholar 

  • Inal JM (2003) Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp 51(4):237–244

    CAS  Google Scholar 

  • Inglis V, Frerichs GN, Millar SD et al (1991) Antibiotic resistance of Aeromonas salmonicida isolated from Atlantic salmon, Salmo salar L., in Scotland. J Fish Dis 14(3):353–358

    CAS  Google Scholar 

  • Inglis V, Millar SD, Richards RH (1993a) Resistance of Aeromonas salmonicida to amoxicillin. J Fish Dis 16(4):389–395

    CAS  Google Scholar 

  • Inglis V, Yimer E, Bacon EJ et al (1993b) Plasmid-mediated antibiotic resistance in Aeromonas salmonicida isolated from Atlantic salmon, Salmo salar L., in Scotland. J Fish Dis 16(6):593–599

    CAS  Google Scholar 

  • Jado I, López R, García E et al (2003) Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 52:967–973

    PubMed  CAS  Google Scholar 

  • Jiang G, Su M (2009) Quorum-sensing of bacteria and its application. JOUC 8(4):385–391

    Google Scholar 

  • Jorquera MA, Valencia G, Eguchi M et al (2002) Disinfection of seawater for hatchery aquaculture systems using electrolytic water treatment. Aquaculture 207(3–4):213–224

    CAS  Google Scholar 

  • Karunasagar I, Pai R, Malathi GR et al (1994) Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture 128(3–4):203–209

    Google Scholar 

  • Karunasagar I, Karunasagar I, Umesha RK (2004) Microbial diseases in shrimp aquaculture. In: Ramaiah N (ed) Marine Microbiology: facets and opportunities. National Institute of Oceanography, Goa, pp 121–134

  • Karunasagar I, Vinod MG, Kennedy B et al (2005) Biocontrol of bacterial pathogens in aquaculture with emphasis on phage therapy. In: Walker PJ, Lester RG, Bondad-Reantaso MG (eds) Diseases in Asian Aquaculture V. Fish Health Section, Asian Fisheries Society, Manila, pp 535–542

  • Karunasagar I, Shivu MM, Girisha SK et al (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268(1–4):288–292

    Google Scholar 

  • Kay WW, Trust TJ (1991) Form and functions of the regular surface array (S-layer) of Aeromonas salmonicida. Experientia 47(5):412–414

    PubMed  CAS  Google Scholar 

  • Kerry J, Hiney M, Coyne R et al (1994) Frequency and distribution of resistance to oxytetracycline in micro-organisms isolated from marine fish farm sediments following therapeutic use of oxytetracycline. Aquaculture 123(1–2):43–54

    Google Scholar 

  • Kim JH, Gomez DK, Nakai T et al (2010) Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet Microbiol 140(1–2):109–115

    PubMed  CAS  Google Scholar 

  • Kruse H, Sørum H (1994) Transfer of multiple drug resistance plasmids between bacteria of diverse origins in natural microenvironments. Appl Environ Microbiol 60(11):4015–4021

    PubMed  CAS  Google Scholar 

  • Kutter E, Sulakvelidze A (2005) Bacteriophages: biology and applications—molecular biology and applications. CRC Press, New York

    Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8(5):317–327

    PubMed  CAS  Google Scholar 

  • Lavilla-Pitogo CR, Baticados MCL, Cruz-Lacierda ER et al (1990) Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 91(1–2):1–13

    Google Scholar 

  • Le Pennec M, Prieur D (1977) Les antibiotiques dans les elevages de larves de bivalves marins. Aquaculture 12(1):15–30

    Google Scholar 

  • Lees D (2000) Viruses and bivalve shellfish. Int J Food Microbiol 59(1–2):81–116

    PubMed  CAS  Google Scholar 

  • Legnani P, Leoni E, Lev D et al (1998) Distribution of indicador bacteria and bacteriophages in shellfish and shellfish growing waters. J Appl Microbiol 85:790–798

    PubMed  CAS  Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166–173

    PubMed  CAS  Google Scholar 

  • Lila R, Yaowanit D, Sataporn D et al (1999) Lethal toxicity of Vibrio harveyi to cultivated Penaeus monodon induced by a bacteriophage. Dis Aquat Org 35(3):195–201

    Google Scholar 

  • Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172

    PubMed  CAS  Google Scholar 

  • Loeffler JM, Djurkovic S, Fischetti VA (2003) Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 71:6199–6204

    PubMed  CAS  Google Scholar 

  • Lorch A (1999) Bacteriophages: an alternative to antibiotics? Biotechnol Dev Monit 14–17

  • Magaraggia M, Faccenda F, Gandolfi A et al (2006) Treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact. J Environ Monit 8(9):923–931

    PubMed  CAS  Google Scholar 

  • Mathur MD, Vidhani S, Mehndiratta PL (2003) Bacteriophage therapy: an alternative to conventional antibiotics. J Assoc Physicians India 51:593–596

    PubMed  CAS  Google Scholar 

  • Matsuoka S, Hashizume T, Kanzaki H et al (2007) Phage therapy against beta-hemolytic streptococcicosis of Japanese flounder Paralichthys olivaceus. Fish Pathol 42(4):181–189

    Google Scholar 

  • Matsuzaki S, Rashel M, Uchiyama J et al (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11(5):211–219

    PubMed  Google Scholar 

  • McCullers JA, Karlstrom A, Iverson AR et al (2007) Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathog 3:28

    Google Scholar 

  • Merino S, Camprubi S, Tomas JM (1990) Isolation and characterization of bacteriophage PM2 from Aeromonas hydrophila. FEMS Microbiol Lett 68(3):239–244

    CAS  Google Scholar 

  • Merril CR, Scholl D, Adhya S (2006) Phage therapy. In: Calendar R (ed) The Bacteriophage. Oxford University Press, New York, pp 725–741

  • Mialhe E, Bachere E, Boulo V et al (1995) Future of biotechnology-based control of disease in marine invertebrates. Mol Mar Biol Biotechnol 4(4):275–283

    PubMed  CAS  Google Scholar 

  • Miedzybrodzki R, Fortuna W, Weber-Dabrowska B et al (2007) Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Hig Med Dosw (Online) 61:461–465

    Google Scholar 

  • Miossec L, Le Guyader F, Pelletier D et al (2001) Validity of Escherichia coli, enterovirus, and F-specific RNA bacteriophages as indicators of viral shellfish contamination J Shellfish Res 20(3):1223–1227

    Google Scholar 

  • Miranda CD, Zemelman R (2002) Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture 212(1–4):31–47

    CAS  Google Scholar 

  • Moriarty DJW (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164(1–4):351–358

    Google Scholar 

  • Morrison S, Rainnie DJ (2004) Bacteriophage therapy: an alternative to antibiotic therapy in aquaculture? Can Tech Rep Fish Aquat Sci 2532:23

    Google Scholar 

  • Munro PO, Barbour A, Birkbeck TH (1994) Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions. J Appl Microbiol 77(5):560–566

    Google Scholar 

  • Munro J, Oakey J, Bromage E et al (2003) Experimental bacteriophage-mediated virulence in strains of Vibrio harveyi. Dis Aquat Org 54(3):187–194

    PubMed  Google Scholar 

  • Muroga K (2001) Viral and bacterial diseases of marine fish and shellfish in Japanese hatcheries. Aquaculture 202(1–2):23–44

    Google Scholar 

  • Nakai T (2010) Application of bacteriophages for control of infectious diseases in aquaculture. In: Sabour PM, Griffiths MW (eds) Bacteriophages in the control of food- and waterborne pathogens. American Society for Microbiology Press, Washington, pp 257–272

  • Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153(1):13–18

    PubMed  Google Scholar 

  • Nakai T, Sugimoto R, Park K-H et al (1999) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Org 37:33–41

    PubMed  CAS  Google Scholar 

  • Nanni H, Bronzetti L, Fabio G et al (2000) Microbiological survey of shellfish. Ig Mod 114(2):113–127

    Google Scholar 

  • Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA 98:4107–4112

    PubMed  CAS  Google Scholar 

  • Nicolas JL, Corre S, Gauthier G et al (1996) Bacterial problems associated with scallop Pecten maximus larval culture. Dis Aquat Org 27:67–76

    Google Scholar 

  • Nikoskelainen S, Ouwehand AC, Bylund G et al (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immun 15(5):443–452

    CAS  Google Scholar 

  • Oakey HJ, Owens L (2000) A new bacteriophage, VHML, isolated from a toxin-producing strain of Vibrio harveyi in tropical Australia. J Appl Microbiol 89(4):702–709

    PubMed  CAS  Google Scholar 

  • Oakey HJ, Cullen BR, Owens L (2002) The complete nucleotide sequence of the Vibrio harveyi bacteriophage VHML. J Appl Microbiol 93(6):1089–1098

    PubMed  CAS  Google Scholar 

  • O’Flaherty S, Ross RP, Coffey A (2009) Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 33(4):801–819

    PubMed  Google Scholar 

  • Olivier G (1992) Furunculosis in the Atlantic provinces: an overview. Bull Aquac Assoc Can 92:4–10

    Google Scholar 

  • Oliveira J, Cunha A, Castilho F et al (2011) Microbial contamination and purification of bivalve shellfish: crucial aspects in monitoring and future perspectives—a mini-review. Food Control 22:805–816

    Google Scholar 

  • Park SC, Nakai T (2003) Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis Aquat Organ 53:33–39

    PubMed  Google Scholar 

  • Park K-H, Matsuoka S, Nakai T et al (1997) A virulent bacteriophage of Lactococcus garvieae (formerly Enterococcus seriolicida) isolated from yellowtail Seriola quinqueradiata. Dis Aquat Org 29(2):145–149

    Google Scholar 

  • Park K-H, Kato H, Nakai T et al (1998) Phage typing of Lactococcus garvieae (formerly Enterococcus seriolicida) a pathogen of cultured yellowtail. Fish Sci 64:62–64

    CAS  Google Scholar 

  • Park SC, Shimamura I, Fukunaga M et al (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66(4):1416–1422

    PubMed  CAS  Google Scholar 

  • Pass DA, Dybdahl R, Mannion MM (1987) Investigations into the causes of mortality of the pearl oyster, Pinctada maxima (Jamson), IN Western Australia. Aquaculture 65(2):149–169

    Google Scholar 

  • Payne M (2007) Towards successful aquaculture of the tropical rock lobster, Panulirus ornatus: the microbiology of larval rearing. PhD Thesis, University of Queensland

  • Payne RJH, Jansen VAA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42(4):315–325

    PubMed  CAS  Google Scholar 

  • Pereira C, Salvador S, Arrojado C et al (2011) Evaluating seasonal dynamics of bacterial communities in marine fish aquaculture: a preliminary study before applying phage therapy. J Environ Monit 13(4):1053–1058

    PubMed  CAS  Google Scholar 

  • Perreten V (2005) Resistance in the food chain and in bacteria from animals: relevance to human infections. In: White DG, Alekshun MN, McDermott PF (eds) Frontiers in antimicrobial resistance. American Society for Microbiology, Washington, DC, pp 575

  • Petty NK, Evans TJ, Fineran PC et al (2007) Biotechnological exploitation of bacteriophage research. Trends Biotechnol 25(1):7–15

    PubMed  CAS  Google Scholar 

  • Phumkhachorn P, Rattanachaikunsopon P (2010) Isolation and partial characterization of a bacteriophage infecting the shrimp pathogen Vibrio harveyi. Afr J Microbiol Res 4(16):1794–1800

    Google Scholar 

  • Pillay TVR, Kutty MN (2005) Aquaculture: principles and practices. Blackwell Publishing, Oxford

    Google Scholar 

  • Pirisi A (2000) Phage therapy—advantages over antibiotics? Lancet 356:1418

    PubMed  CAS  Google Scholar 

  • Prado S, Romalde JL, Barja JL (2010) Review of probiotics for use in bivalve hatcheries. Vet Microbiol 145(3–4):187–197

    PubMed  Google Scholar 

  • Prasad Y, Arpana, Kumar D et al (2011) Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease. J Environ Biol 32:161–168

  • Rashel M, Uchiyama J, Ujihara T et al (2007) Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis 196:1237–1247

    PubMed  CAS  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56(1):117–137

    PubMed  CAS  Google Scholar 

  • Ripp S, Miller RV (1997) The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiol 143:2065–2070

    CAS  Google Scholar 

  • Ripp S, Miller RV (1998) Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa. Microbiol 144(8):2225–2232

    CAS  Google Scholar 

  • Roberts Y, Nation T, Kutter E et al (2002) Isolation and characterization of bacteriophages potentially useful as a treatment for furunculosis in salmonid fishes. Abstr Gen Meet Am Soc Microbiol 103:303

    Google Scholar 

  • Rodgers CJ, Pringle JH, McCarthy DH et al (1981) Quantitative and qualitative studies of Aeromonas salmonicida bacteriophage. J Gen Microbiol 125(2):335–345

    Google Scholar 

  • Sandeep K (2006) Bacteriophage precision drug against bacterial infections. Curr Sci 90(5):631–633

    Google Scholar 

  • Sapkota A, Sapkota AR, Kucharski M et al (2008) Aquaculture practices and potential human health risks: current knowledge and future priorities. Environ Int 34(8):1215–1226

    PubMed  Google Scholar 

  • Schöbitz RP, Bórquez PA, Costa ME et al (2006) Bacteriocins like substance production by Carnobacterium piscicola in a continuous system with three culture broths. Study of antagonism against Listeria monocytogenes on vacuum packaged salmon. Braz J Microbiol 37:52–57

    Google Scholar 

  • Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nat Biotechnol 418:884–888

    CAS  Google Scholar 

  • Scott AE, Timms AR, Connerton PL et al (2007) Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog 3(8):1142–1151

    PubMed  Google Scholar 

  • Shehane SD, Sizemore RK (2002) Isolation and preliminary characterization of bacteriocins produced by Vibrio vulnificus. J Appl Microbiol 92(2):322–328

    PubMed  CAS  Google Scholar 

  • Shivu MM, Rajeeva BC, Girisha SK et al (2007) Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environments along the coast of India. Environ Microbiol 9(2):322–331

    PubMed  CAS  Google Scholar 

  • Sinton LW, Finlay RK, Lynch PA (1999) Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Appl Environ Microbiol 65(8):3605–3613

    PubMed  CAS  Google Scholar 

  • Skjermo J, Vadstein O (1999) Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 177(1–4):333–343

    CAS  Google Scholar 

  • Skjermo J, Salvesen I, Øie G et al (1997) Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae. Aquac Int 5(1):13–28

    Google Scholar 

  • Skurnik M, Strauch E (2006) Phage therapy: facts and fiction. Int J Med Microbiol 296(1):5–14

    PubMed  CAS  Google Scholar 

  • Srinivasan P, Ramasamy P, Brennan GP et al (2007) Inhibitory effects of bacteriophages on the growth of Vibrio sp. pathogens of shrimp in the Indian aquaculture environment. Asian J Anim Vet Adv 2(4):166–183

    Google Scholar 

  • Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74(13):4070–4078

    PubMed  CAS  Google Scholar 

  • Stevenson RMW, Airdrie DW (1984) Isolation of Yersinia ruckeri bacteriophages. Appl Environ Microbiol 47(6):1201–1205

    PubMed  CAS  Google Scholar 

  • Sugumar G, Nakai T, Hirata Y et al (1998) Vibrio splendidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis Aquat Org 33:111–118

    PubMed  CAS  Google Scholar 

  • Sulakvelidze A, Morris JG Jr (2001) Bacteriophages as therapeutic agents. Ann Med 33(8):507–509

    PubMed  CAS  Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659

    PubMed  CAS  Google Scholar 

  • Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55(1):437–451

    PubMed  CAS  Google Scholar 

  • Tan Y-T, Tillett DJ, McKay IA (2000) Molecular strategies for overcoming antibiotic resistance in bacteria. Mol Med Today 6(8):309–314

    PubMed  CAS  Google Scholar 

  • Taylor PW, Stapleton PD, Paul Luzio J (2002) New ways to treat bacterial infections. Drug Discov Today 7(21):1086–1091

    PubMed  Google Scholar 

  • Tendencia EA (2007) Polyculture of green mussels, brown mussels and oysters with shrimp control luminous bacterial disease in a simulated culture system. Aquaculture 272(1–4):188–191

    Google Scholar 

  • Tendencia EA, de la Peña LD (2001) Antibiotic resistance of bacteria from shrimp ponds. Aquaculture 195(3–4):193–204

    CAS  Google Scholar 

  • Tendencia EA, de la Peña M (2003) Investigation of some components of the greenwater system which makes it effective in the initial control of luminous bacteria. Aquaculture 218(1–4):115–119

    Google Scholar 

  • Thiel K (2004) Old dogma, new tricks-21st century phage therapy. Nat Biotechnol 22(1):31–36

    PubMed  CAS  Google Scholar 

  • Vadstein O (1997) The use of immunostimulation in marine larviculture: possibilities and challenges. Aquaculture 155(1–4):401–417

    Google Scholar 

  • Verner-Jeffreys DW, Algoet M, Pond MJ et al (2007) Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture 270(1–4):475–484

    Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P et al (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671

    PubMed  CAS  Google Scholar 

  • Vinod MG, Shivu MM, Umesha KR et al (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255(1–4):117–124

    CAS  Google Scholar 

  • Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70(8):3985–3993

    PubMed  CAS  Google Scholar 

  • Walakira JK, Carrias AA, Hossain MJ et al (2008) Identification and characterization of bacteriophages specific to the catfish pathogen, Edwardsiella ictaluri. J Appl Microbiol 105(6):2133–2142

    PubMed  CAS  Google Scholar 

  • Weld RJ, Butts C, Heinemann JA (2004) Models of phage growth and their applicability to phage therapy. J Theor Biol 227(1):1–11

    PubMed  CAS  Google Scholar 

  • Wiklund T, Dalsgaard I (1998) Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: a review. Dis Aquat Org 32(1):49–69

    PubMed  CAS  Google Scholar 

  • Wilhelm SW, Weinbauer MG, Suttle CA et al (1998) The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr 43(4):586–592

    Google Scholar 

  • Withey S, Cartmell E, Avery LM et al (2005) Bacteriophages—potential for application in wastewater treatment processes. Sci Total Environ 339(1–3):1–18

    PubMed  CAS  Google Scholar 

  • Wommack KE, Hill RT, Muller TA et al (1996) Effects of sunlight on bacteriophage viability and structure. Appl Environ Microbiol 62(4):1336–1341

    PubMed  CAS  Google Scholar 

  • Wu JL, Chao WJ (1982) Isolation and application of a new bacteriophage, ET-1, which infect Edwardsiella tarda, the pathogen of edwardsiellosis. Rep Fish Dis Res IV(8):8–17

  • Wu JL, Lin HM, Jan L et al (1981) Biological control of fish bacterial pathogen, Aeromonas hydrophila, by bacteriophage AH1. Fish Pathol 15:271–276

    Google Scholar 

  • Yamamoto A, Maegawa T (2008) Phage typing of Edwardsiella tarda from eel farm and diseased eel. Aquac Sci 56(4):611–612

    Google Scholar 

  • Yoong P, Schuch R, Nelson D et al (2004) Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 186:4808–4812

    PubMed  CAS  Google Scholar 

  • Yoong P, Schuch R, Nelson D et al (2006) PlyPH, a bacteriolytic enzyme with a broad pH range of activity and lytic action against Bacillus anthracis. J Bacteriol 188:2711–2714

    PubMed  CAS  Google Scholar 

  • Yuksel SA, Thompson KD, Ellis AE et al (2001) Purification of Piscirickettsia salmonis and associated phage particles. Dis Aquat Org 44(3):231–235

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge to Professor Toshihiro Nakai from the Graduate School of Biosphere Science of the Hiroshima University, for providing us some references. This work was supported by Portuguese Foundation for Science and Technology in the form of the Ph. D. grant SFRH/BD/28747/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, J., Castilho, F., Cunha, A. et al. Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquacult Int 20, 879–910 (2012). https://doi.org/10.1007/s10499-012-9515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-012-9515-7

Keywords

Navigation