Skip to main content
Log in

Piperazine clubbed with 2-azetidinone derivatives suppresses proliferation, migration and induces apoptosis in human cervical cancer HeLa cells through oxidative stress mediated intrinsic mitochondrial pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Piperazine scaffolds or 2-azetidinone pharmacophores have been reported to show anti-cancer activities and apoptosis induction in different types of cancer cells. However, the mechanistic studies involve in induction of apoptosis addressing these two moieties for human cervical cancer cells remain uncertain. The present study emphasizes on the anti-proliferating properties and mechanism involved in induction of apoptosis for these structurally related azoles derivatives in HeLa cancer cells. 1-Phenylpiperazine clubbed with 2-azetidione derivatives (5a5h) were synthesized, characterized using various spectroscopic techniques and evaluated for their in-vitro anti-proliferative activities and induction of apoptosis. Further, we also evaluated oxidative stress generated by these synthetic derivatives (5a5h). Cell viability studies revealed that among all, the compound N-(3-chloro-2-(3-nitrophenyl)-4-oxoazetidin-1-yl)-2-(4-phenylpiperazin-1-yl) acetamide 5e remarkably inhibited the growth of HeLa cells in a concentration dependent manner having IC50 value of 29.44 ± 1.46 µg/ml. Morphological changes, colonies suppression and inhibition of migration clearly showed the antineoplasicity in HeLa cells treated with 5e. Simultaneously, phosphatidylserine externalization, DNA fragmentation and cell-cycle arrest showed ongoing apoptosis in the HeLa cancer cells induced by compound 5e in concentration dependent manner. Additionally, generation of intracellular ROS along with the decrease in mitochondrial membrane potential supported that compound 5e caused oxidative stress resulting in apoptosis through mitochondria mediated pathway. Elevation in the level of cytochrome c and upregulation in expression of caspase-3 clearly indicated the involvement of the intrinsic pathway of programmed cell death. In brief; compound 5e could serve as a promising lead for the development of an effective antitumor agent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2.5-diphenyl-tetrazolium bromide

DCFH-DA:

2′,7′-Dichlorofluorescin diacetate

AO:

Acridine organe

ROS:

Reactive oxygen species

MMP:

Mitochondrial membrane potential

RPMI:

Roswell Park Memorial Institute medium

References

  1. Khazaei S, Ramachandran V, Abdul Hamid R, Esa NM, Etemad A, Moradipoor S, Ismail P (2017) Flower extract of Allium atroviolaceum triggered apoptosis, activated caspase-3 and down-regulated antiapoptotic Bcl-2 gene in HeLa cancer cell line. Biomed Pharmacother 89:1216–1226

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (2014) GLOBOCAN2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. International agency for research on cancer, population fact sheets (Islamic Republic of Iran)

  3. Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124:511–515

    Article  CAS  PubMed  Google Scholar 

  4. Thangam R, Sathuvan M, Poongodi A, Suresh V, Pazhanichamy K, Sivasubramanian S, Kanipandian N, Ganesan N, Rengasamy R, Thirumurugan R (2014) Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions. Carbohydr Polym 107:138–150

    Article  CAS  PubMed  Google Scholar 

  5. Alshatwi AA, Periasamy VS, Athinarayanan J, Elango R (2016) Synergistic anticancer activity of dietary tea polyphenols and bleomycin hydrochloride in human cervical cancer cell: caspase-dependent and independent apoptotic pathways. Chem Biol Interact 247:1–10

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed W, Van Etten RA (2013) Signal transduction in the chronic leukemias: implications for targeted therapies. Curr Hematol Malig Rep 8:71–80

    Article  PubMed  Google Scholar 

  7. Asif M (2015) Piperazine and pyrazine containing molecules and their diverse pharmacological activities. Int J Adv Sci Res 1:05–11

    Article  Google Scholar 

  8. Berkheij M, van der Sluis L, Sewing C, den Boer DJ, Terpstra JW, Hiemstra H, Bakker WII, van den Hoogenband A, van Maarseveen JH (2005) Synthesis of 2-substituted piperazines via direct α-lithiation. Tetrahedron Lett 46:2369–2371

    Article  CAS  Google Scholar 

  9. Wilson WD, Barton HJ, Tanious FA, Kong S-B, Strekowski L (1990) The interaction with DNA of unfused aromatic systems containing terminal piperazino substituents: intercalation and groove-binding. Biophys Chem 35:227–243

    Article  CAS  PubMed  Google Scholar 

  10. Gillet R, Jeannesson P, Sefraoui H, Arnould-Guerin M-L, Kirkiacharian S, Jardillier J-C, Pieri F (1997) Piperazine derivatives of butyric acid as differentiating agents in human leukemic cells. Cancer Chemother Pharmacol 41:252–255

    Article  Google Scholar 

  11. Upadhayaya RS, Sinha N, Jain S, Kishore N, Chandra R, Arora SK (2004) Optically active antifungal azoles: synthesis and antifungal activity of (2R, 3S)-2-(2, 4-difluorophenyl)-3-(5-{2-[4-aryl-piperazin-1-yl]-ethyl}-tetrazol-2-yl/1-yl)-1-[1, 2, 4]-triazol-1-yl-butan-2-ol. Bioorg Med Chem 12:2225–2238

    Article  CAS  PubMed  Google Scholar 

  12. Chaudhary P, Kumar R, Verma AK, Singh D, Yadav V, Chhillar AK, Sharma G, Chandra R (2006) Synthesis and antimicrobial activity of N-alkyl and N-aryl piperazine derivatives. Bioorg Med Chem 14:1819–1826

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida M, Maehara Y, Sugimachi K (1999) MST-16, a novel bis-dioxopiperazine anticancer agent, ameliorates doxorubicin-induced acute toxicity while maintaining antitumor efficacy. Clin Cancer Res 5:4295–4300

    CAS  PubMed  Google Scholar 

  14. Hatnapure GD, Keche AP, Rodge AH, Birajdar SS, Tale RH, Kamble VM (2012) Synthesis and biological evaluation of novel piperazine derivatives of flavone as potent anti-inflammatory and antimicrobial agent. Bioorg Med Chem Lett 22:6385–6390

    Article  CAS  PubMed  Google Scholar 

  15. Shaquiquzzaman M, Verma G, Marella A, Akhter M, Akhtar W, Khan MF, Tasneem S, Alam MM (2015) Piperazine scaffold: a remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 102:487–529

    Article  CAS  PubMed  Google Scholar 

  16. Sun J (2017) Discovery of a series of 1,3,4-oxadiazole-2(3H)-thione derivatives containing piperazine skeleton as potential FAK inhibitors. Bioorg Med Chem Lett 25:2593–2600

    Article  CAS  Google Scholar 

  17. Guo FJ, Sun J, Gao LL, Wang XY, Zhang Y, Qian SS, Zhu HL (2015) Discovery of phenylpiperazine derivatives as IGF-1R inhibitor with potent antiproliferative properties in vitro. Bioorg Med Chem Lett 25:1067–1071

    Article  CAS  PubMed  Google Scholar 

  18. da Silva DD, Silva MJ, Moreira P, Martins MJ, Valente MJ, Carvalho F, de Lourdes Bastos M, Carmo H (2016) In vitro hepatotoxicity of ‘Legal X’: the combination of 1 benzylpiperazine (BZP) and 1 (m trifluoromethylphenyl) piperazine (TFMPP) triggers oxidative stress, mitochondrial impairment and apoptosis. Springer, Heidelberg

    Google Scholar 

  19. Mehta PD, Sengar NP, Pathak AK (2010) 2-Azetidinone–a new profile of various pharmacological activities. Eur J Med Chem 45:5541–5560

    Article  CAS  PubMed  Google Scholar 

  20. Arya N, Jagdale AY, Patil TA, Yeramwar SS, Holikatti SS, Dwivedi J, Shishoo CJ, Jain KS (2014) The chemistry and biological potential of azetidin-2-ones. Eur J Med Chem 74:619–656

    Article  CAS  PubMed  Google Scholar 

  21. Smith DM, Kazi A, Smith L, Long TE, Heldreth B, Turos E, Dou QP (2002) A novel beta-lactam antibiotic activates tumor cell apoptotic program by inducing DNA damage. Mol Pharmacol 61:1348–1358

    Article  CAS  PubMed  Google Scholar 

  22. Dhivya R (2015) In virto antiprolifeative and apoptosis-inducing properties of a mononuclear copper (II) complex with dppz ligand, i = n two genotypically different breast cancer cell lines. Springer, New York

    Google Scholar 

  23. Wani MY, Ahmad A, Shiekh RA, Al-Ghamdi KJ, Sobral AJ (2015) Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorg Med Chem 23:4172–4180

    Article  CAS  PubMed  Google Scholar 

  24. Unver Y, Sancak K, Celik F, Birinci E, Kucuk M, Soylu S, Burnaz NA (2014) New thiophene-1,2,4-triazole-5(3)-ones: highly bioactive thiosemicarbazides, structures of Schiff bases and triazole-thiols. Eur J Med Chem 84:639–650

    Article  CAS  PubMed  Google Scholar 

  25. O’Boyle NM, Greene LM, Bergin O, Fichet JB, McCabe T, Lloyd DG, Zisterer DM, Meegan MJ (2011) Synthesis, evaluation and structural studies of antiproliferative tubulin-targeting azetidin-2-ones. Bioorg Med Chem 19:2306–2325

    Article  PubMed  Google Scholar 

  26. Morris GM (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  27. Cohen G, Sun X, Snowden R, Dinsdale D, Skilleter D (1992) Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286:331–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu Z, Wang R, Xu L, Xie S, Dong J, Jing Y (2011) β-Elemene piperazine derivatives induce apoptosis in human leukemia cells through downregulation of c-FLIP and generation of ROS. PLoS ONE 6:e15843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geesala R, Gangasani JK, Budde M, Balasubramanian S, Vaidya JR, Das A (2016) 2-Azetidinones: synthesis and biological evaluation as potential anti-breast cancer agents. Eur J Med Chem 124:544–558

    Article  CAS  PubMed  Google Scholar 

  30. Shyam H, Singh N, Kaushik S, Sharma R, Balapure AK (2017) Centchroman induces redox-dependent apoptosis and cell-cycle arrest in human endometrial cancer cells. Apoptosis 22:570–584

    Article  CAS  PubMed  Google Scholar 

  31. Aarts M, Sharpe R, Garcia-Murillas I, Gevensleben H, Hurd MS, Shumway SD, Toniatti C, Ashworth A, Turner NC (2012) Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov 2:524–539

    Article  CAS  PubMed  Google Scholar 

  32. Kumar R, Tiku A (2018) Galangin induces cell death by modulating the expression of glyoxalase-1 and Nrf-2 in HeLa cells. Chem Biol Interact 279:1–9

    Article  CAS  PubMed  Google Scholar 

  33. Tentner AR, Lee MJ, Ostheimer GJ, Samson LD, Lauffenburger DA, Yaffe MB (2012) Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. Mol Syst Biol 8, 568

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gasparri F, Cappella P, Galvani A (2006) Multiparametric cell cycle analysis by automated microscopy. J Biomol Screen 11:586–598

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y-J, Liang Z-H, Hong X-L, Li Z-Z, Yao J-H, Huang H-L (2012) Synthesis, characterization, cytotoxicity, apoptotic inducing activity, cellular uptake, interaction of DNA binding and antioxidant activity studies of ruthenium (II) complexes. Inorg Chim Acta 387:117–124

    Article  CAS  Google Scholar 

  36. Khanam R, Ahmad K, Hejazi II, Siddique IA, Kumar V, Bhat AR, Azam A, Athar F (2017) Inhibitory growth evaluation and apoptosis induction in MCF-7 cancer cells by new 5-aryl-2-butylthio-1,3,4-oxadiazole derivatives. Cancer Chemother Pharmacol 80:1027–1042

    Article  CAS  PubMed  Google Scholar 

  37. Hejazi II, Khanam R, Mehdi SH, Bhat AR, Rizvi MMA, Islam A, Thakur SC, Athar F (2017) New insights into the antioxidant and apoptotic potential of Glycyrrhiza glabra L. during hydrogen peroxide mediated oxidative stress: an in vitro and in silico evaluation. Biomed Pharmacother 94:265–279

    Article  CAS  PubMed  Google Scholar 

  38. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research work has been funded by UGC (F no-43-172/2014 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdul Roouf Bhat or Fareeda Athar.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article has no studies concerned with human participants or animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2018_1439_MOESM1_ESM.docx

Includes NMR spectral analysis and bar graph for cell viability assay (Figs. S.1, S.2, S.3, S.4 and S.5). (DOCX 7879 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanam, R., Kumar, R., Hejazi, I.I. et al. Piperazine clubbed with 2-azetidinone derivatives suppresses proliferation, migration and induces apoptosis in human cervical cancer HeLa cells through oxidative stress mediated intrinsic mitochondrial pathway. Apoptosis 23, 113–131 (2018). https://doi.org/10.1007/s10495-018-1439-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1439-x

Keywords

Navigation