Skip to main content

Advertisement

Log in

Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. May M (2014) Statistics: attacking an epidemic. Nature 509(7502):S50–S51. doi:10.1038/509S50a

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29. doi:10.3322/caac.21254

    Article  PubMed  Google Scholar 

  3. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799. doi:10.1038/nm1087

    Article  CAS  PubMed  Google Scholar 

  4. Millimouno FM, Dong J, Yang L, Li J, Li X (2014) Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res 7(11):1081–1107. doi:10.1158/1940-6207.capr-14-0136

    Article  CAS  Google Scholar 

  5. Pan S, Zhou S, Gao S, Yu Z, Zhang S, Tang M, Sun J, Ma D, Han Y, Fong W, Ko K (2013) New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. doi:10.1155/2013/627375

    Google Scholar 

  6. Ansari J, Inamdar N (2010) The promise of traditional medicines. Int J Pharmacol 6(6):808–812. doi:10.3923/ijp.2010.808.812

    Article  Google Scholar 

  7. WHO (2010) WHO monographs on medicinal plants commonly used in the Newly Independent States (NIS). WHO, Geneva. ISBN 978 92 4 159772 2

  8. Azaizeh H, Saad B, Cooper E, Said O (2010) Traditional arabic and islamic medicine, a re-emerging health aid. Evid Based Complement Alternat Med 4:419–424. doi:10.1093/ecam/nen039

    Article  Google Scholar 

  9. Yang B, Xu FY, Sun HJ, Zou Z, Shi XY, Ling CQ, Tang L (2014) Da-cheng-qi decoction, a traditional Chinese herbal formula, for intestinal obstruction: systematic review and meta-analysis. Afr J Tradit Complement Altern Med 11(4):101–119

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bodeker G, Kronenberg F (2002) A public health agenda for traditional, complementary, and alternative medicine. Am J Public Health 92(10):1582–1591

    Article  PubMed Central  PubMed  Google Scholar 

  11. Werneke U, Earl J, Seydel C, Horn O, Crichton P, Fannon D (2004) Potential health risks of complementary alternative medicines in cancer patients. Br J Cancer 90(2):408–413. doi:10.1038/sj.bjc.6601560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shukla S, Meeran SM, Katiyar SK (2014) Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett 355(1):9–17. doi:10.1016/j.canlet.2014.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2(2):303–336. doi:10.3390/metabo2020303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Darwiche N, El-Banna S, Gali-Muhtasib H (2007) Cell cycle modulatory and apoptotic effects of plant-derived anticancer drugs in clinical use or development. Expert Opin Drug Discov 2(3):361–379. doi:10.1517/17460441.2.3.361

    Article  CAS  PubMed  Google Scholar 

  15. Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, Kong AN (2013) Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther 137(2):153–171. doi:10.1016/j.pharmthera.2012.09.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chan FK, Luz NF, Moriwaki K (2015) Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33:79–106. doi:10.1146/annurev-immunol-032414-112248

    Article  CAS  PubMed  Google Scholar 

  17. Kharb M, Jat RK, Anju G (2012) A review on medicinal plants used as a source of anticancer agents. Int J Drug Res Tech 2(2):177–183

    Google Scholar 

  18. Gonzalez-Vallinas M, Gonzalez-Castejon M, Rodriguez-Casado A, Ramirez de Molina A (2013) Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr Rev 71(9):585–599. doi:10.1111/nure.12051

    Article  PubMed  Google Scholar 

  19. Naasani I, Oh-Hashi F, Oh-Hara T, Feng WY, Johnston J, Chan K, Tsuruo T (2003) Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Res 63(4):824–830

    CAS  PubMed  Google Scholar 

  20. Arapitsas P (2012) Hydrolyzable tannin analysis in food. Food Chem 135(3):1708–1717. doi:10.1016/j.foodchem.2012.05.096

    Article  CAS  PubMed  Google Scholar 

  21. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem 50(3):586–621. doi:10.1002/anie.201000044

    Article  CAS  Google Scholar 

  22. Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ (2007) Dietary polyphenolic phytochemicals-promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 3:451–458. doi:10.1002/ijc.22419

    Article  CAS  Google Scholar 

  23. Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18(1):1–29

    Article  CAS  PubMed  Google Scholar 

  24. Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501(1):65–72. doi:10.1016/j.abb.2010.06.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. He Q, Shi B, Yao K, Luo Y, Ma Z (2001) Synthesis of gallotannins. Carbohydr Res 335(4):245–250

    Article  CAS  PubMed  Google Scholar 

  26. Leopoldini M, Russo N, Toscano M (2006) Gas and liquid phase acidity of natural antioxidants. J Agric Food Chem 54(8):3078–3085

    Article  CAS  PubMed  Google Scholar 

  27. Arakawa H, Maeda M, Okubo S, Shimamura T (2004) Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull 27(3):277–281

    Article  CAS  PubMed  Google Scholar 

  28. Charlton AJ, Baxter NJ, Khan ML, Moir AJ, Haslam E, Davies AP, Williamson MP (2002) Polyphenol/peptide binding and precipitation. J Agric Food Chem 50(6):1593–1601

    Article  CAS  PubMed  Google Scholar 

  29. Araujo JR, Goncalves P, Martel F (2011) Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 31(2):77–87. doi:10.1016/j.nutres.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  30. Feitelson MA, Arzumanyan A, Kulathinal RJ et al (2015) Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. doi:10.1016/j.semcancer.2015.02.006

    PubMed  Google Scholar 

  31. Hasima N, Ozpolat B (2014) Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 5:e1509. doi:10.1038/cddis.2014.467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Phuah NH, Nagoor NH (2014) Regulation of microRNAs by natural agents: new strategies in cancer therapies. Biomed Res Int. doi:10.1155/2014/804510

    PubMed Central  PubMed  Google Scholar 

  33. Pozo-Guisado E, Alvarez-Barrientos A, Mulero-Navarro S, Santiago-Josefat B, Fernandez-Salguero PM (2002) The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem Pharmacol 64(9):1375–1386

    Article  CAS  PubMed  Google Scholar 

  34. Michels G, Watjen W, Weber N, Niering P, Chovolou Y, Kampkotter A, Proksch P, Kahl R (2006) Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells. Toxicology 225(2–3):173–182. doi:10.1016/j.tox.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  35. Cichewicz RH, Kouzi SA (2002) Resveratrol oligomers: structure, chemistry, and biological activity. In: Atta ur R (ed) Studies in natural products chemistry, vol 26, part G. Elsevier, Amsterdam, pp 507–579. doi:10.1016/S1572-5995(02)80014-X

  36. Frazzi R, Tigano M (2014) The multiple mechanisms of cell death triggered by resveratrol in lymphoma and leukemia. Int J Mol Sci 15(3):4977–4993. doi:10.3390/ijms15034977

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Bhat KP, Lantvit D, Christov K, Mehta RG, Moon RC, Pezzuto JM (2001) Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res 61(20):7456–7463

    CAS  PubMed  Google Scholar 

  38. McCalley AE, Kaja S, Payne AJ, Koulen P (2014) Resveratrol and calcium signaling: molecular mechanisms and clinical relevance. Molecules 19(6):7327–7340. doi:10.3390/molecules19067327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Opipari AW Jr, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR (2004) Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 64(2):696–703

    Article  CAS  PubMed  Google Scholar 

  40. Tyagi A, Singh RP, Agarwal C, Siriwardana S, Sclafani RA, Agarwal R (2005) Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells. Carcinogenesis 26(11):1978–1987. doi:10.1093/carcin/bgi165

    Article  CAS  PubMed  Google Scholar 

  41. Ohshiro K, Rayala SK, Kondo S, Gaur A, Vadlamudi RK, El-Naggar AK, Kumar R (2007) Identifying the estrogen receptor coactivator PELP1 in autophagosomes. Cancer Res 67(17):8164–8171. doi:10.1158/0008-5472.can-07-0038

    Article  CAS  PubMed  Google Scholar 

  42. Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329. doi:10.1038/cdd.2008.51

    Article  CAS  PubMed  Google Scholar 

  43. Kueck A, Opipari AW Jr, Griffith KA, Tan L, Choi M, Huang J, Wahl H, Liu JR (2007) Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol Oncol 107(3):450–457. doi:10.1016/j.ygyno.2007.07.065

    Article  CAS  PubMed  Google Scholar 

  44. Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C (2008) Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 29(2):381–389. doi:10.1093/carcin/bgm271

    Article  CAS  PubMed  Google Scholar 

  45. Miki H, Uehara N, Kimura A, Sasaki T, Yuri T, Yoshizawa K, Tsubura A (2012) Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int J Oncol 40(4):1020–1028. doi:10.3892/ijo.2012.1325

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Puissant A, Robert G, Fenouille N, Luciano F, Cassuto JP, Raynaud S, Auberger P (2010) Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res 70(3):1042–1052. doi:10.1158/0008-5472.can-09-3537

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto M, Suzuki SO, Himeno M (2010) Resveratrol-induced autophagy in human U373 glioma cells. Oncol Lett 1(3):489–493. doi:10.3892/ol_00000086

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Back JH, Zhu Y, Calabro A, Queenan C, Kim AS, Arbesman J, Kim AL (2012) Resveratrol-mediated downregulation of Rictor attenuates autophagic process and suppresses UV-induced skin carcinogenesis. Photochem Photobiol 88(5):1165–1172. doi:10.1111/j.1751-1097.2012.01097.x

    Article  CAS  PubMed  Google Scholar 

  49. Alayev A, Doubleday PF, Berger SM, Ballif BA, Holz MK (2014) Phosphoproteomics reveals resveratrol-dependent inhibition of Akt/mTORC1/S6K1 signaling. J Proteome Res 13(12):5734–5742. doi:10.1021/pr500714a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Signorelli P, Munoz-Olaya JM, Gagliostro V, Casas J, Ghidoni R, Fabrias G (2009) Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett 282(2):238–243. doi:10.1016/j.canlet.2009.03.020

    Article  CAS  PubMed  Google Scholar 

  51. Fu Y, Chang H, Peng X, Bai Q, Yi L, Zhou Y, Zhu J, Mi M (2014) Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/beta-catenin signaling pathway. PLoS ONE 9(7):e102535. doi:10.1371/journal.pone.0102535

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Siedlecka-Kroplewska K, Jozwik A, Boguslawski W, Wozniak M, Zauszkiewicz-Pawlak A, Spodnik JH, Rychlowski M, Kmiec Z (2013) Pterostilbene induces accumulation of autophagic vacuoles followed by cell death in HL60 human leukemia cells. J Physiol Pharmacol 64(5):545–556

    CAS  PubMed  Google Scholar 

  53. Heiss EH, Schilder YD, Dirsch VM (2007) Chronic treatment with resveratrol induces redox stress- and ataxia telangiectasia-mutated (ATM)-dependent senescence in p53-positive cancer cells. J Biol Chem 282(37):26759–26766. doi:10.1074/jbc.M703229200

    Article  CAS  PubMed  Google Scholar 

  54. Luo H, Yang A, Schulte BA, Wargovich MJ, Wang GY (2013) Resveratrol induces premature senescence in lung cancer cells via ROS-mediated DNA damage. PLoS ONE 8(3):e60065. doi:10.1371/journal.pone.0060065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gao Z, Xu MS, Barnett TL, Xu CW (2011) Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells. Biochem Biophys Res Commun 407(2):271–276. doi:10.1016/j.bbrc.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  56. Yang Q, Wang B, Zang W, Wang X, Liu Z, Li W, Jia J (2013) Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLoS ONE 8(11):e70627. doi:10.1371/journal.pone.0070627

    Article  PubMed Central  PubMed  Google Scholar 

  57. Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21(3):R209–R225. doi:10.1530/ERC-13-0171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Guo LY, Peng Y, Li YL, Yao JP, Wang J, Zhang GM, Chen J, Sui LH (2010) Mechanisms of resveratrol bovine serum albumin nanoparticle-induced cell death in human ovarian cancer SKOV3 cells. Nan Fang Yi Ke Da Xue Xue Bao. 30(11):2440–2442

    CAS  PubMed  Google Scholar 

  59. Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19(34):6064–6093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Mohan A, Narayanan S, Sethuraman S, Krishnan UM (2014) Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BioMed Res Intern 2014:424239. doi:10.1155/2014/424239

    Article  CAS  Google Scholar 

  61. Patel KR, Brown VA, Jones DJ, Britton RG, Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA, Brenner DE, Steward WP, Gescher AJ, Brown K (2010) Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 70(19):7392–7399. doi:10.1158/0008-5472.can-10-2027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Sordillo PP, Helson L (2015) Curcumin and cancer stem cells: curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res 35(2):599–614

    CAS  PubMed  Google Scholar 

  63. Li Y, Zhang T (2014) Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett 346(2):197–205. doi:10.1016/j.canlet.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  64. Zang S, Liu T, Shi J, Qiao L (2014) Curcumin: a promising agent targeting cancer stem cells. Anticancer Agents Med Chem 14(6):787–792

    Article  CAS  PubMed  Google Scholar 

  65. Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C (2015) Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 35(2):645–651

    CAS  PubMed  Google Scholar 

  66. Tuorkey MJ (2014) Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci 6(4):139–146. doi:10.1556/imas.6.2014.4.1

    Article  PubMed Central  PubMed  Google Scholar 

  67. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72(1):29–39. doi:10.1124/mol.106.033167

    Article  CAS  PubMed  Google Scholar 

  68. Mosieniak G, Adamowicz M, Alster O, Jaskowiak H, Szczepankiewicz AA, Wilczynski GM, Ciechomska IA, Sikora E (2012) Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mech Ageing Dev 133(6):444–455. doi:10.1016/j.mad.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  69. Kim JY, Cho TJ, Woo BH, Choi KU, Lee CH, Ryu MH, Park HR (2012) Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch Oral Biol 57(8):1018–1025. doi:10.1016/j.archoralbio.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  70. Yamauchi Y, Izumi Y, Asakura K, Hayashi Y, Nomori H (2012) Curcumin induces autophagy in ACC-MESO-1 cells. Phytother Res 26(12):1779–1783. doi:10.1002/ptr.4645

    Article  CAS  PubMed  Google Scholar 

  71. Jia YL, Li J, Qin ZH, Liang ZQ (2009) Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J Asian Nat Prod Res 11(11):918–928. doi:10.1080/10286020903264077

    Article  CAS  PubMed  Google Scholar 

  72. Lee YJ, Kim NY, Suh YA, Lee C (2011) Involvement of ROS in curcumin-induced autophagic cell death. Korean J Physiol Pharmacol 15(1):1–7. doi:10.4196/kjpp.2011.15.1.1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, Rajasekaran SA (2011) Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer 11:144. doi:10.1186/1471-2407-11-144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. O’Sullivan-Coyne G, O’Sullivan GC, O’Donovan TR, Piwocka K, McKenna SL (2009) Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br J Cancer 101(9):1585–1595. doi:10.1038/sj.bjc.6605308

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Pietrocola F, Lachkar S, Enot DP, Niso-Santano M, Bravo-San Pedro JM, Sica V, Izzo V, Maiuri MC, Madeo F, Marino G, Kroemer G (2015) Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ 22(3):509–516. doi:10.1038/cdd.2014.215

    Article  CAS  PubMed  Google Scholar 

  76. Thongrakard V, Titone R, Follo C, Morani F, Suksamrarn A, Tencomnao T, Isidoro C (2014) Turmeric toxicity in A431 epidermoid cancer cells associates with autophagy degradation of anti-apoptotic and anti-autophagic p53 mutant. Phytother Res 28(12):1761–1769. doi:10.1002/ptr.5196

    Article  PubMed  Google Scholar 

  77. Saleh EM, El-awady RA, Eissa NA, Abdel-Rahman WM (2012) Antagonism between curcumin and the topoisomerase II inhibitor etoposide: a study of DNA damage, cell cycle regulation and death pathways. Cancer Biol Ther 13(11):1058–1071. doi:10.4161/cbt.21078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Basile V, Belluti S, Ferrari E, Gozzoli C, Ganassi S, Quaglino D, Saladini M, Imbriano C (2013) bis-Dehydroxy-Curcumin triggers mitochondrial-associated cell death in human colon cancer cells through ER-stress induced autophagy. PLoS ONE 8(1):e53664. doi:10.1371/journal.pone.0053664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Qu W, Xiao J, Zhang H, Chen Q, Wang Z, Shi H, Gong L, Chen J, Liu Y, Cao R, Lv J (2013) B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway. Intern J Biol Sci 9(8):766–777. doi:10.7150/ijbs.5711

    Article  CAS  Google Scholar 

  80. Zhou GZ, Xu SL, Sun GC, Chen XB (2014) Novel curcumin analogue IHCH exhibits potent antiproliferative effects by inducing autophagy in A549 lung cancer cells. Mol Med Rep 10(1):441–446. doi:10.3892/mmr.2014.2183

    CAS  PubMed  Google Scholar 

  81. Wang G, Wang JJ, Yang GY, Du SM, Zeng N, Li DS, Li RM, Chen JY, Feng JB, Yuan SH, Ye F (2012) Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomed 7:271–280. doi:10.2147/ijn.s26935

    Article  CAS  Google Scholar 

  82. Kang D, Park W, Lee S, Kim JH, Song JJ (2013) Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment. Cell Signal 25(5):1288–1300. doi:10.1016/j.cellsig.2013.01.014

    Article  CAS  PubMed  Google Scholar 

  83. Watanabe FT, Chade DC, Reis ST, Piantino C, Dall’ Oglio MF, Srougi M, Leite KR (2011) Curcumin, but not Prima-1, decreased tumor cell proliferation in the syngeneic murine orthotopic bladder tumor model. Clinics 66(12):2121–2124

    Article  PubMed Central  PubMed  Google Scholar 

  84. Jiang Z, Jin S, Yalowich JC, Brown KD, Rajasekaran B (2010) The mismatch repair system modulates curcumin sensitivity through induction of DNA strand breaks and activation of G2-M checkpoint. Mol Cancer Ther 9(3):558–568. doi:10.1158/1535-7163.mct-09-0627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4(12):938–947. doi:10.1038/nrm1260

    Article  CAS  PubMed  Google Scholar 

  86. Subramaniam D, Ramalingam S, Linehan DC, Dieckgraefe BK, Postier RG, Houchen CW, Jensen RA, Anant S (2011) RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS ONE 6(2):e16958. doi:10.1371/journal.pone.0016958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Ogiwara H, Ui A, Shiotani B, Zou L, Yasui A, Kohno T (2013) Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor. Carcinogenesis 34(11):2486–2497. doi:10.1093/carcin/bgt240

    Article  CAS  PubMed  Google Scholar 

  88. Hendrayani SF, Al-Khalaf HH, Aboussekhra A (2013) Curcumin triggers p16-dependent senescence in active breast cancer-associated fibroblasts and suppresses their paracrine procarcinogenic effects. Neoplasia 15(6):631–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Li Y, Gao J, Zhong Z, Hoi P, Lee S, Wang Y (2013) Bisdemethoxycurcumin suppresses MCF-7 cells proliferation by inducing ROS accumulation and modulating senescence-related pathways. Pharmacol Rep 65(3):700–709

    Article  CAS  PubMed  Google Scholar 

  90. Zhuang W, Long L, Zheng B, Ji W, Yang N, Zhang Q, Liang Z (2012) Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy. Cancer Sci 103(4):684–690. doi:10.1111/j.1349-7006.2011.02198.x

    Article  CAS  PubMed  Google Scholar 

  91. Gossner G, Choi M, Tan L, Fogoros S, Griffith KA, Kuenker M, Liu JR (2007) Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol Oncol 105(1):23–30. doi:10.1016/j.ygyno.2006.11.009

    Article  CAS  PubMed  Google Scholar 

  92. Tominaga Y, Wang A, Wang RH, Wang X, Cao L, Deng CX (2007) Genistein inhibits Brca1 mutant tumor growth through activation of DNA damage checkpoints, cell cycle arrest, and mitotic catastrophe. Cell Death Differ 14(3):472–479. doi:10.1038/sj.cdd.4402037

    Article  CAS  PubMed  Google Scholar 

  93. Xie X, Wang SS, Wong TC, Fung MC (2013) Genistein promotes cell death of ethanol-stressed HeLa cells through the continuation of apoptosis or secondary necrosis. Cancer Cell Intern 13(1):63. doi:10.1186/1475-2867-13-63

    Article  CAS  Google Scholar 

  94. Bao B, Azmi AS, Li Y, Ahmad A, Ali S, Banerjee S, Kong D, Sarkar FH (2014) Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther 9(1):22–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242. doi:10.1016/j.canlet.2008.03.052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Dixon RA, Ferreira D (2002) Genistein. Phytochemistry 60(3):205–211

    Article  CAS  PubMed  Google Scholar 

  97. Singletary K, Milner J (2008) Diet, autophagy, and cancer: a review. Cancer Epidemiol Biomark Prev 17(7):1596–1610. doi:10.1158/1055-9965.epi-07-2917

    Article  CAS  Google Scholar 

  98. Sprouse AA, Steding CE, Herbert BS (2012) Pharmaceutical regulation of telomerase and its clinical potential. J Cell Mol Med 16(1):1–7. doi:10.1111/j.1582-4934.2011.01460.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Ajay G, Genistein AB (2009) Genistein: a multipurpose isoflavone. Int J Green Pharmacy 3(3):176–183

    Article  Google Scholar 

  100. Kim SH, Kim CW, Jeon SY, Go RE, Hwang KA, Choi KC (2014) Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab Anim Res 30(4):143–150. doi:10.5625/lar.2014.30.4.143

    Article  PubMed Central  PubMed  Google Scholar 

  101. Uckun FM, Evans WE, Forsyth CJ, Waddick KG, Ahlgren LT, Chelstrom LM, Burkhardt A, Bolen J, Myers DE (1995) Biotherapy of B-cell precursor leukemia by targeting genistein to CD19-associated tyrosine kinases. Science 267(5199):886–891

    Article  CAS  PubMed  Google Scholar 

  102. Kalfalah FM, Mielke C, Christensen MO, Baechler S, Marko D, Boege F (2011) Genotoxicity of dietary, environmental and therapeutic topoisomerase II poisons is uniformly correlated to prolongation of enzyme DNA residence. Mol Nutr Food Res 55(Suppl 1):S127–142. doi:10.1002/mnfr.201000509

    Article  CAS  PubMed  Google Scholar 

  103. Sarkar FH, Li Y (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21(3–4):265–280

    Article  CAS  PubMed  Google Scholar 

  104. Lu JJ, Bao JL, Chen XP, Huang M, Wang YT (2012) Alkaloids isolated from natural herbs as the anticancer agents. Evid Based Complement Alternat Med. doi:10.1155/2012/485042

    Google Scholar 

  105. Manske R (1965) The alkaloids: chemistry and physiology. In: Manske RHF (ed) The alkaloids: chemistry and physiology, vol 8. Academic Press, New York, pp 47–53. doi:10.1016/S1876-0813(08)60042-1

  106. McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. http://old.iupac.org/publications/compendium/

  107. Meyers R (2001) Encyclopedia of physical science and technology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  108. Tohme R, Darwiche N, Gali-Muhtasib H (2011) A journey under the sea: the quest for marine anti-cancer alkaloids. Molecules 16(11):9665–9696. doi:10.3390/molecules16119665

    Article  CAS  PubMed  Google Scholar 

  109. Ortiz LM, Lombardi P, Tillhon M, Scovassi AI (2014) Berberine, an epiphany against cancer. Molecules 19(8):12349–12367. doi:10.3390/molecules190812349

    Article  PubMed  CAS  Google Scholar 

  110. Tillhon M, Guaman Ortiz LM, Lombardi P, Scovassi AI (2012) Berberine: new perspectives for old remedies. Biochem Pharmacol 84(10):1260–1267. doi:10.1016/j.bcp.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  111. Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 11(2):110–120

    Article  PubMed  Google Scholar 

  112. Sun Y, Xun K, Wang Y, Chen X (2009) A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs 20(9):757–769. doi:10.1097/CAD.0b013e328330d95b

    Article  CAS  PubMed  Google Scholar 

  113. Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH (2014) Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur J Pharmacol 740:584–595. doi:10.1016/j.ejphar.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  114. Li XL, Hu YJ, Wang H, Yu BQ, Yue HL (2012) Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules 13(3):873–880. doi:10.1021/bm2017959

    Article  CAS  PubMed  Google Scholar 

  115. Peng PL, Kuo WH, Tseng HC, Chou FP (2008) Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: the contribution of autophagic cell death. Int J Radiat Oncol Biol Phys 70(2):529–542. doi:10.1016/j.ijrobp.2007.08.034

    Article  CAS  PubMed  Google Scholar 

  116. Wang N, Feng Y, Zhu M, Tsang CM, Man K, Tong Y, Tsao SW (2010) Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. J Cell Biochem 111(6):1426–1436. doi:10.1002/jcb.22869

    Article  CAS  PubMed  Google Scholar 

  117. Hou Q, Tang X, Liu H, Tang J, Yang Y, Jing X, Xiao Q, Wang W, Gou X, Wang Z (2011) Berberine induces cell death in human hepatoma cells in vitro by downregulating CD147. Cancer Sci 102(7):1287–1292. doi:10.1111/j.1349-7006.2011.01933.x

    Article  CAS  PubMed  Google Scholar 

  118. Yu R, Zhang ZQ, Wang B, Jiang HX, Cheng L, Shen LM (2014) Berberine-induced apoptotic and autophagic death of HepG2 cells requires AMPK activation. Cancer Cell Intern 14:49. doi:10.1186/1475-2867-14-49

    Article  CAS  Google Scholar 

  119. Letasiova S, Jantova S, Cipak L, Muckova M (2006) Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett 239(2):254–262. doi:10.1016/j.canlet.2005.08.024

    Article  CAS  PubMed  Google Scholar 

  120. Zhao X, Tong N (2012) Protective effects of berberine on doxorubicin-induced nephrotoxicity in mice. J Transl Med 10(Suppl 2):A66–A66. doi:10.1186/1479-5876-10-S2-A66

    Article  PubMed Central  Google Scholar 

  121. Wang Y, Liu Q, Liu Z, Li B, Sun Z, Zhou H, Zhang X, Gong Y, Shao C (2012) Berberine, a genotoxic alkaloid, induces ATM-Chk1 mediated G2 arrest in prostate cancer cells. Mutat Res 734(1–2):20–29. doi:10.1016/j.mrfmmm.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  122. Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6):385–392. doi:10.1038/nrm3115

    Article  CAS  PubMed  Google Scholar 

  123. Naasani I, Seimiya H, Yamori T, Tsuruo T (1999) FJ5002: a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res 59(16):4004–4011

    CAS  PubMed  Google Scholar 

  124. Pierpaoli E, Arcamone AG, Buzzetti F, Lombardi P, Salvatore C, Provinciali M (2013) Antitumor effect of novel berberine derivatives in breast cancer cells. BioFactors 39(6):672–679. doi:10.1002/biof.1131

    Article  CAS  PubMed  Google Scholar 

  125. Elzi DJ, Lai Y, Song M, Hakala K, Weintraub ST, Shiio Y (2012) Plasminogen activator inhibitor 1-insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence. Proc Natl Acad Sci USA 109(30):12052–12057. doi:10.1073/pnas.1120437109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Liu Q, Xu X, Zhao M, Wei Z, Li X, Zhang X, Liu Z, Gong Y, Shao C (2015) Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway. Mol Cancer Ther 14(2):355–363. doi:10.1158/1535-7163.mct-14-0634

    Article  PubMed  CAS  Google Scholar 

  127. Halicka HD, Zhao H, Li J, Lee YS, Hsieh TC, Wu JM, Darzynkiewicz Z (2012) Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling. Aging 4(12):952–965

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Zhao H, Halicka HD, Li J, Darzynkiewicz Z (2013) Berberine suppresses gero-conversion from cell cycle arrest to senescence. Aging 5(8):623–636

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Anis K, Kuttan G, Kuttan R (1999) Role of berberine as an adjuvant response modifier during tumour therapy in mice. Pharm Pharmacol Commun 5(12):697–700. doi:10.1211/146080899128734415

    Article  CAS  Google Scholar 

  130. Nishino H, Kitagawa K, Fujiki H, Iwashima A (1986) Berberine sulfate inhibits tumor-promoting activity of teleocidin in two-stage carcinogenesis on mouse skin. Oncology 43(2):131–134

    Article  CAS  PubMed  Google Scholar 

  131. Mahmoudian M, Rahimi-Moghaddam P (2009) The anti-cancer activity of noscapine: a review. Recent Pat AntiCancer Drug Discov 4(1):92–97

    Article  CAS  PubMed  Google Scholar 

  132. Karna P, Zughaier S, Pannu V, Simmons R, Narayan S, Aneja R (2010) Induction of reactive oxygen species-mediated autophagy by a novel microtubule-modulating agent. J Biol Chem 285(24):18737–18748. doi:10.1074/jbc.M109.091694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Jaiswal AS, Aneja R, Connors SK, Joshi HC, Multani AS, Pathak S, Narayan S (2009) 9-bromonoscapine-induced mitotic arrest of cigarette smoke condensate-transformed breast epithelial cells. J Cell Biochem 106(6):1146–1156. doi:10.1002/jcb.22099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Pannu V, Rida PC, Ogden A, Clewley R, Cheng A, Karna P, Lopus M, Mishra RC, Zhou J, Aneja R (2012) Induction of robust de novo centrosome amplification, high-grade spindle multipolarity and metaphase catastrophe: a novel chemotherapeutic approach. Cell Death Dis 3:e346. doi:10.1038/cddis.2012.82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Ye K, Ke Y, Keshava N, Shanks J, Kapp JA, Tekmal RR, Petros J, Joshi HC (1998) Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc Natl Acad Sci USA 95(4):1601–1606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Landen JW, Hau V, Wang M, Davis T, Ciliax B, Wainer BH, Van Meir EG, Glass JD, Joshi HC, Archer DR (2004) Noscapine crosses the blood-brain barrier and inhibits glioblastoma growth. Clin Cancer Res 10(15):5187–5201. doi:10.1158/1078-0432.ccr-04-0360

    Article  CAS  PubMed  Google Scholar 

  137. Roubille F, Kritikou E, Busseuil D, Barrere-Lemaire S, Tardif JC (2013) Colchicine: an old wine in a new bottle? AntiInflamm Antiallergy Agents Med Chem 12(1):14–23

    Article  CAS  PubMed  Google Scholar 

  138. Terkeltaub RA (2009) Colchicine update: 2008. Semin Arthritis Rheum 38(6):411–419. doi:10.1016/j.semarthrit.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  139. Sivakumar G (2013) Colchicine semisynthetics: chemotherapeutics for cancer? Curr Med Chem 20(7):892–898

    CAS  PubMed  Google Scholar 

  140. Atkinson JM, Falconer RA, Edwards DR, Pennington CJ, Siller CS, Shnyder SD, Bibby MC, Patterson LH, Loadman PM, Gill JH (2010) Development of a novel tumor-targeted vascular disrupting agent activated by membrane-type matrix metalloproteinases. Cancer Res 70(17):6902–6912. doi:10.1158/0008-5472.can-10-1440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Arthur CR, Gupton JT, Kellogg GE, Yeudall WA, Cabot MC, Newsham IF, Gewirtz DA (2007) Autophagic cell death, polyploidy and senescence induced in breast tumor cells by the substituted pyrrole JG-03-14, a novel microtubule poison. Biochem Pharmacol 74(7):981–991. doi:10.1016/j.bcp.2007.07.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Biggers JW, Nguyen T, Di X, Gupton JT, Henderson SC, Emery SM, Alotaibi M, White KL Jr, Brown R, Almenara J, Gewirtz DA (2013) Autophagy, cell death and sustained senescence arrest in B16/F10 melanoma cells and HCT-116 colon carcinoma cells in response to the novel microtubule poison, JG-03-14. Cancer Chemother Pharmacol 71(2):441–455. doi:10.1007/s00280-012-2024-6

    Article  CAS  PubMed  Google Scholar 

  143. Larocque K, Ovadje P, Djurdjevic S, Mehdi M, Green J, Pandey S (2014) Novel analogue of colchicine induces selective pro-death autophagy and necrosis in human cancer cells. PLoS ONE 9(1):e87064. doi:10.1371/journal.pone.0087064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Blakey DC, Westwood FR, Walker M, Hughes GD, Davis PD, Ashton SE, Ryan AJ (2002) Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models. Clin Cancer Res 8(6):1974–1983

    CAS  PubMed  Google Scholar 

  145. LoRusso PM, Gadgeel SM, Wozniak A, Barge AJ, Jones HK, DelProposto ZS, DeLuca PA, Evelhoch JL, Boerner SA, Wheeler C (2008) Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors. Invest New Drugs 26(2):159–167. doi:10.1007/s10637-008-9112-9

    Article  CAS  PubMed  Google Scholar 

  146. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5(6):423–435. doi:10.1038/nrc1628

    Article  CAS  PubMed  Google Scholar 

  147. Quatrale AE, Porcelli L, Gnoni A, Numico G, Paradiso A, Azzariti A (2014) New vascular disrupting agents in upper gastrointestinal malignancies. Curr Med Chem 21(8):1039–1049

    Article  CAS  PubMed  Google Scholar 

  148. Crielaard BJ, van der Wal S, Lammers T, Le HT, Hennink WE, Schiffelers RM, Storm G, Fens MH (2011) A polymeric colchicinoid prodrug with reduced toxicity and improved efficacy for vascular disruption in cancer therapy. Int J Nanomed 6:2697–2703. doi:10.2147/ijn.s24450

    Article  CAS  Google Scholar 

  149. Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT (2012) Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 21(12):1801–1818. doi:10.1517/13543784.2012.727395

    Article  CAS  PubMed  Google Scholar 

  150. Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N (2010) What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 15(15–16):668–678. doi:10.1016/j.drudis.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  151. Yang H, Dou QP (2010) Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer. Curr Drug Targets 11(6):733–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Merfort I (2011) Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets 12(11):1560–1573

    Article  CAS  PubMed  Google Scholar 

  153. Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, D’Herde K (2012) Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 23(9):883–896. doi:10.1097/CAD.0b013e328356cad9

    PubMed  Google Scholar 

  154. Ghantous A, Sinjab A, Herceg Z, Darwiche N (2013) Parthenolide: from plant shoots to cancer roots. Drug Discov Today 18(17–18):894–905. doi:10.1016/j.drudis.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  155. Schneider-Stock R, Ghantous A, Bajbouj K, Saikali M, Darwiche N (2012) Epigenetic mechanisms of plant-derived anticancer drugs. Front Biosci 17:129–173

    Article  CAS  Google Scholar 

  156. Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, Becker MW, Bennett JM, Sullivan E, Lachowicz JL, Vaughan A, Sweeney CJ, Matthews W, Carroll M, Liesveld JL, Crooks PA, Jordan CT (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110(13):4427–4435. doi:10.1182/blood-2007-05-090621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. D’Anneo A, Carlisi D, Lauricella M, Puleio R, Martinez R, Di Bella S, Di Marco P, Emanuele S, Di Fiore R, Guercio A, Vento R, Tesoriere G (2013) Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Disease 4:e891. doi:10.1038/cddis.2013.415

  158. Lu C, Wang W, Jia Y, Liu X, Tong Z, Li B (2014) Inhibition of AMPK/autophagy potentiates parthenolide-induced apoptosis in human breast cancer cells. J Cell Biochem 115(8):1458–1466. doi:10.1002/jcb.24808

    Article  CAS  PubMed  Google Scholar 

  159. Sun J, Zhang C, Bao YL, Wu Y, Chen ZL, Yu CL, Huang YX, Sun Y, Zheng LH, Wang X, Li YX (2014) Parthenolide-induced apoptosis, autophagy and suppression of proliferation in HepG2 cells. Asian Pac J Cancer Prev 15(12):4897–4902

    Article  PubMed  Google Scholar 

  160. Lan B, Wan YJ, Pan S, Wang Y, Yang Y, Leng QL, Jia H, Liu YH, Zhang CZ, Cao Y (2015) Parthenolide induces autophagy via the depletion of 4E-BP1. Biochem Biophys Res Commun 456(1):434–439. doi:10.1016/j.bbrc.2014.11.102

    Article  CAS  PubMed  Google Scholar 

  161. Pozarowski P, Halicka DH, Darzynkiewicz Z (2003) Cell cycle effects and caspase-dependent and independent death of HL-60 and Jurkat cells treated with the inhibitor of NF-kappaB parthenolide. Cell Cycle 2(4):377–383

    Article  CAS  PubMed  Google Scholar 

  162. Zhou W, Xu X (1994) Total synthesis of the antimalarial sesquiterpene peroxide Qinghaosu and Yingzhaosu A. Acc Chem Res 27(7):211–216. doi:10.1021/ar00043a005

    Article  CAS  Google Scholar 

  163. Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14(11):727–736. doi:10.1038/nrm3683

    Article  CAS  PubMed  Google Scholar 

  164. Wang C, Lu J, Wang Y, Bai S, Wang Y, Wang L, Sheng G (2012) Combined effects of FLT3 and NF-kappaB selective inhibitors on acute myeloid leukemia in vivo. J Biochem Mol Toxicol 26(1):35–43. doi:10.1002/jbt.20411

    Article  PubMed  CAS  Google Scholar 

  165. Li XJ, Jiang ZZ, Zhang LY (2014) Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol 155(1):67–79. doi:10.1016/j.jep.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  166. Chen L, Liu Q, Huang Z, Wu F, Li Z, Chen X, Lin T (2012) Tripchlorolide induces cell death in lung cancer cells by autophagy. Int J Oncol 40(4):1066–1070. doi:10.3892/ijo.2011.1278

    PubMed Central  CAS  PubMed  Google Scholar 

  167. McCallum C, Kwon S, Leavitt P, Shen DM, Liu W, Gurnett A (2007) Triptolide binds covalently to a 90 kDa nuclear protein. Role of epoxides in binding and activity. Immunobiology 212(7):549–556. doi:10.1016/j.imbio.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  168. Wang Y, Lu JJ, He L, Yu Q (2011) Triptolide (TPL) inhibits global transcription by inducing proteasome-dependent degradation of RNA polymerase II (Pol II). PLoS ONE 6(9):e23993. doi:10.1371/journal.pone.0023993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Yang S, Chen J, Guo Z, Xu XM, Wang L, Pei XF, Yang J, Underhill CB, Zhang L (2003) Triptolide inhibits the growth and metastasis of solid tumors. Mol Cancer Ther 2(1):65–72

    CAS  PubMed  Google Scholar 

  170. Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, Vickers SM, Saluja AK (2007) Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res 67(19):9407–9416. doi:10.1158/0008-5472.can-07-1077

    Article  CAS  PubMed  Google Scholar 

  171. Mujumdar N, Mackenzie TN, Dudeja V, Chugh R, Antonoff MB, Borja-Cacho D, Sangwan V, Dawra R, Vickers SM, Saluja AK (2010) Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology 139(2):598–608. doi:10.1053/j.gastro.2010.04.046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Mujumdar N, Banerjee S, Chen Z, Sangwan V, Chugh R, Dudeja V, Yamamoto M, Vickers SM, Saluja AK (2014) Triptolide activates unfolded protein response leading to chronic ER stress in pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol 306(11):G1011–1020. doi:10.1152/ajpgi.00466.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Krosch TC, Sangwan V, Banerjee S, Mujumdar N, Dudeja V, Saluja AK, Vickers SM (2013) Triptolide-mediated cell death in neuroblastoma occurs by both apoptosis and autophagy pathways and results in inhibition of nuclear factor-kappa B activity. Am J Surg 205(4):387–396. doi:10.1016/j.amjsurg.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  174. Jia W, Pua HH, Li QJ, He YW (2011) Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 186(3):1564–1574. doi:10.4049/jimmunol.1001822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Kiviharju TM, Lecane PS, Sellers RG, Peehl DM (2002) Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells. Clin Cancer Res 8(8):2666–2674

    CAS  PubMed  Google Scholar 

  176. Tengchaisri T, Chawengkirttikul R, Rachaphaew N, Reutrakul V, Sangsuwan R, Sirisinha S (1998) Antitumor activity of triptolide against cholangiocarcinoma growth in vitro and in hamsters. Cancer Lett 133(2):169–175

    Article  CAS  PubMed  Google Scholar 

  177. Antonoff MB, Chugh R, Borja-Cacho D, Dudeja V, Clawson KA, Skube SJ, Sorenson BS, Saltzman DA, Vickers SM, Saluja AK (2009) Triptolide therapy for neuroblastoma decreases cell viability in vitro and inhibits tumor growth in vivo. Surgery 146(2):282–290. doi:10.1016/j.surg.2009.04.023

    Article  PubMed  Google Scholar 

  178. Fulda S (2008) Betulinic acid for cancer treatment and prevention. Int J Mol Sci 9(6):1096–1107. doi:10.3390/ijms9061096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Gheorgheosu D, Duicu O, Dehelean C, Soica C, Muntean D (2014) Betulinic acid as a potent and complex antitumor phytochemical: a minireview. AntiCancer Agents Med Chem 14(7):936–945

    Article  CAS  PubMed  Google Scholar 

  180. Csuk R (2014) Betulinic acid and its derivatives: a patent review (2008-2013). Expert Opin Ther Pat 24(8):913–923. doi:10.1517/13543776.2014.927441

    Article  CAS  PubMed  Google Scholar 

  181. Xu T, Pang Q, Zhou D, Zhang A, Luo S, Wang Y, Yan X (2014) Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells. PLoS ONE 9(8):e105768. doi:10.1371/journal.pone.0105768

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  182. Chadalapaka G, Jutooru I, Burghardt R, Safe S (2010) Drugs that target specificity proteins downregulate epidermal growth factor receptor in bladder cancer cells. Mol Cancer Res 8(5):739–750. doi:10.1158/1541-7786.MCR-09-0493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Gonzalez P, Mader I, Tchoghandjian A, Enzenmuller S, Cristofanon S, Basit F, Debatin KM, Fulda S (2012) Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ 19(8):1337–1346. doi:10.1038/cdd.2012.10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Yang LJ, Chen Y, He J, Yi S, Wen L, Zhao J, Zhang BP, Cui GH (2012) Betulinic acid inhibits autophagic flux and induces apoptosis in human multiple myeloma cells in vitro. Acta Pharmacol Sin 33(12):1542–1548. doi:10.1038/aps.2012.102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Potze L, Mullauer FB, Colak S, Kessler JH, Medema JP (2014) Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response. Cell Death Dis 5:e1169. doi:10.1038/cddis.2014.139

    Article  CAS  PubMed  Google Scholar 

  186. Yasukawa K, Takido M, Matsumoto T, Takeuchi M, Nakagawa S (1991) Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two-stage carcinogenesis. Oncology 48(1):72–76

    Article  CAS  PubMed  Google Scholar 

  187. Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown DM et al (1995) Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1(10):1046–1051

    Article  CAS  PubMed  Google Scholar 

  188. Sawada N, Kataoka K, Kondo K, Arimochi H, Fujino H, Takahashi Y, Miyoshi T, Kuwahara T, Monden Y, Ohnishi Y (2004) Betulinic acid augments the inhibitory effects of vincristine on growth and lung metastasis of B16F10 melanoma cells in mice. Br J Cancer 90(8):1672–1678. doi:10.1038/sj.bjc.6601746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C, Formelli F (2002) Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett 175(1):17–25

    Article  CAS  PubMed  Google Scholar 

  190. Wang P, Li Q, Li K, Zhang X, Han Z, Wang J, Gao D, Li J (2012) Betulinic acid exerts immunoregulation and anti-tumor effect on cervical carcinoma (U14) tumor-bearing mice. Pharmazie 67(8):733–739

    CAS  PubMed  Google Scholar 

  191. Safe S, Abdelrahim M (2005) Sp transcription factor family and its role in cancer. Eur J Cancer 41(16):2438–2448. doi:10.1016/j.ejca.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  192. Chintharlapalli S, Papineni S, Lei P, Pathi S, Safe S (2011) Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors. BMC Cancer 11:371. doi:10.1186/1471-2407-11-371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Chintharlapalli S, Papineni S, Ramaiah SK, Safe S (2007) Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res 67(6):2816–2823. doi:10.1158/0008-5472.can-06-3735

    Article  CAS  PubMed  Google Scholar 

  194. Mertens-Talcott SU, Noratto GD, Li X, Angel-Morales G, Bertoldi MC, Safe S (2013) Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and microRNA-27a:ZBTB10. Mol Carcinog 52(8):591–602. doi:10.1002/mc.21893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  195. Rajendran P, Jaggi M, Singh MK, Mukherjee R, Burman AC (2008) Pharmacological evaluation of C-3 modified betulinic acid derivatives with potent anticancer activity. Invest New Drugs 26(1):25–34. doi:10.1007/s10637-007-9081-4

    Article  CAS  PubMed  Google Scholar 

  196. Fahey JW, Talalay P (1999) Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem Toxicol 37(9–10):973–979

    Article  CAS  PubMed  Google Scholar 

  197. Herman-Antosiewicz A, Johnson DE, Singh SV (2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res 66(11):5828–5835. doi:10.1158/0008-5472.can-06-0139

    Article  CAS  PubMed  Google Scholar 

  198. Jackson SJ, Singletary KW (2004) Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. J Nutr 134(9):2229–2236

    CAS  PubMed  Google Scholar 

  199. Azarenko O, Okouneva T, Singletary KW, Jordan MA, Wilson L (2008) Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane. Carcinogenesis 29(12):2360–2368. doi:10.1093/carcin/bgn241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Mi L, Xiao Z, Hood BL, Dakshanamurthy S, Wang X, Govind S, Conrads TP, Veenstra TD, Chung FL (2008) Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 283(32):22136–22146. doi:10.1074/jbc.M802330200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  201. Parnaud G, Li P, Cassar G, Rouimi P, Tulliez J, Combaret L, Gamet-Payrastre L (2004) Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr Cancer 48(2):198–206. doi:10.1207/s15327914nc4802_10

    Article  CAS  PubMed  Google Scholar 

  202. Marquez RT, Xu L (2012) Bcl-2: beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2(2):214–221

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  204. Pawlik A, Wiczk A, Kaczynska A, Antosiewicz J, Herman-Antosiewicz A (2013) Sulforaphane inhibits growth of phenotypically different breast cancer cells. Eur J Nutr 52(8):1949–1958. doi:10.1007/s00394-013-0499-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  205. Vyas AR, Hahm ER, Arlotti JA, Watkins S, Stolz DB, Desai D, Amin S, Singh SV (2013) Chemoprevention of prostate cancer by d, l-sulforaphane is augmented by pharmacological inhibition of autophagy. Cancer Res 73(19):5985–5995. doi:10.1158/0008-5472.can-13-0755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  206. Payen L, Courtois A, Loewert M, Guillouzo A, Fardel O (2001) Reactive oxygen species-related induction of multidrug resistance-associated protein 2 expression in primary hepatocytes exposed to sulforaphane. Biochem Biophys Res Commun 282(1):257–263. doi:10.1006/bbrc.2001.4531

    Article  CAS  PubMed  Google Scholar 

  207. Fimognari C, Nusse M, Cesari R, Iori R, Cantelli-Forti G, Hrelia P (2002) Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23(4):581–586

    Article  CAS  PubMed  Google Scholar 

  208. Kaminski BM, Weigert A, Brune B, Schumacher M, Wenzel U, Steinhilber D, Stein J, Ulrich S (2011) Sulforaphane potentiates oxaliplatin-induced cell growth inhibition in colorectal cancer cells via induction of different modes of cell death. Cancer Chemother Pharmacol 67(5):1167–1178. doi:10.1007/s00280-010-1413-y

    Article  CAS  PubMed  Google Scholar 

  209. Wang F, Shan Y (2012) Sulforaphane retards the growth of UM-UC-3 xenographs, induces apoptosis, and reduces survivin in athymic mice. Nutr Res 32(5):374–380. doi:10.1016/j.nutres.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  210. Jakubikova J, Cervi D, Ooi M et al (2011) Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma. Haematologica 96(8):1170–1179. doi:10.3324/haematol.2010.029363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. Singh AV, Xiao D, Lew KL, Dhir R, Singh SV (2004) Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25(1):83–90. doi:10.1093/carcin/bgg178

    Article  CAS  PubMed  Google Scholar 

  212. Myzak MC, Tong P, Dashwood WM, Dashwood RH, Ho E (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232(2):227–234

    CAS  Google Scholar 

  213. Li SH, Fu J, Watkins DN, Srivastava RK, Shankar S (2013) Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway. Mol Cell Biochem 373(1–2):217–227. doi:10.1007/s11010-012-1493-6

    Article  CAS  PubMed  Google Scholar 

  214. Tait SW, Ichim G, Green DR (2014) Die another way—non-apoptotic mechanisms of cell death. J Cell Sci 127(Pt 10):2135–2144. doi:10.1242/jcs.093575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. Wilson TR, Johnston PG, Longley DB (2009) Anti-apoptotic mechanisms of drug resistance in cancer. Curr Cancer Drug Targets 9(3):307–319

    Article  CAS  PubMed  Google Scholar 

  216. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (1833) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 12:3448–3459. doi:10.1016/j.bbamcr.2013.06.001

    Google Scholar 

  217. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94. doi:10.1038/nrm3735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  218. Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Los M (2013) Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 17(1):12–29. doi:10.1111/jcmm.12001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  219. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6(6):505–510. doi:10.1038/nrm1666

    Article  CAS  PubMed  Google Scholar 

  220. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410. doi:10.1038/nrc3262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  221. Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J (2014) Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 33(36):4451–4463. doi:10.1038/onc.2013.411

    Article  CAS  PubMed  Google Scholar 

  222. Janku F (2014) Tumor heterogeneity in the clinic: is it a real problem? Therap Adv Med Oncol 6(2):43–51. doi:10.1177/1758834013517414

    Article  Google Scholar 

  223. Easwaran H, Tsai HC, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 54(5):716–727. doi:10.1016/j.molcel.2014.05.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  224. Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T (2014) Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis 7:9–18. doi:10.4137/cgm.s11285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  225. Pistollato F, Giampieri F, Battino M (2015) The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem Toxicol 75:58–70. doi:10.1016/j.fct.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  226. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. doi:10.1146/annurev-immunol-032712-100008

    Article  CAS  PubMed  Google Scholar 

  227. Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21(1):15–25. doi:10.1038/cdd.2013.67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Hikma Pharmaceuticals Company, Amman, Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Darwiche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gali-Muhtasib, H., Hmadi, R., Kareh, M. et al. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis 20, 1531–1562 (2015). https://doi.org/10.1007/s10495-015-1169-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1169-2

Keywords

Navigation