Skip to main content

Advertisement

Log in

The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AIF:

Apoptosis-inducing-factor

Bax:

Bcl-2-associated X protein

Bcl-2:

B-cell lymphoma 2

Bid:

BH3 interacting-domain death agonist

BODIPY:

4,4-Difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-sindacene-3-undecanoic acid

CCCP:

Carbonylcyanide-3-chlorophenylhydrazone

HtrA2:

High temperature requirement factor A2

MMP:

Mitochondrial membrane potential

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NF-κB:

Nuclear factor kappa B

OCR:

Oxygen consumption rate

PCD:

Programmed cell death

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

TLCK:

Nα-tosyl-l-lysine chloromethyl ketone hydrochloride

TPCK:

N-p-tosyl-l-phenylalanine chloromethyl ketone

TMRE:

Tetramethylrhodamine ethyl ester

References

  1. Loo DT, Copani A, Pike CJ et al (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90(17):7951–7955

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1(2):120–129

    Article  PubMed  CAS  Google Scholar 

  3. Culmsee C, Landshamer S (2006) Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res 3(4):269–283

    Article  PubMed  CAS  Google Scholar 

  4. Galluzzi L, Blomgren K, Kroemer G (2009) Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10(7):481–494

    Article  PubMed  CAS  Google Scholar 

  5. Landshamer S, Hoehn M, Barth N et al (2008) Bid-induced release of AIF from mitochondria causes immediate neuronal cell death. Cell Death Differ 15(10):1553–1563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Grohm J, Plesnila N, Culmsee C (2010) Bid mediates fission, membrane permeabilization and peri-nuclear accumulation of mitochondria as a prerequisite for oxidative neuronal cell death. Brain Behav Immun 24(5):831–838

    Article  PubMed  CAS  Google Scholar 

  7. Galluzzi L, Vitale I, Abrams JM et al (2011) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19(1):107–120

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13(24):3179–3184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Zou H (1999) An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274(17):11549–11556

    Article  PubMed  CAS  Google Scholar 

  10. Williams MS, Henkart PA (1994) Apoptotic cell death induced by intracellular proteolysis. J Immunol 153(9):4247–4255

    PubMed  CAS  Google Scholar 

  11. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3(11):E255–E263

    Article  PubMed  CAS  Google Scholar 

  12. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23(16):2881–2890

    Article  PubMed  CAS  Google Scholar 

  13. Miao Q, Sun Y, Wei T et al (2008) Chymotrypsin B cached in rat liver lysosomes and involved in apoptotic regulation through a mitochondrial pathway. J Biol Chem 283(13):8218–8228

    Article  PubMed  CAS  Google Scholar 

  14. Saito Y, Kondo H, Hojo Y (2011) Granzyme B as a novel factor involved in cardiovascular diseases. J Cardiol 57(2):141–147

    Article  PubMed  Google Scholar 

  15. Roberg K (2001) Relocalization of cathepsin D and cytochrome c early in apoptosis revealed by immunoelectron microscopy. Lab Invest 81(2):149–158

    Article  PubMed  CAS  Google Scholar 

  16. Stoka V, Turk B, Schendel SL et al (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276(5):3149–3157

    Article  PubMed  CAS  Google Scholar 

  17. Cirman T, Oresic K, Mazovec GD et al (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279(5):3578–3587

    Article  PubMed  CAS  Google Scholar 

  18. Zhao K, Zhao X, Tu Y et al (2010) Lysosomal chymotrypsin B potentiates apoptosis via cleavage of Bid. Cell Mol Life Sci 67(15):2665–2678

    Article  PubMed  CAS  Google Scholar 

  19. Ruggiero V, Johnson SE, Baglioni C (1987) Protection from tumor necrosis factor cytotoxicity by protease inhibitors. Cell Immunol 107(2):317–325

    Article  PubMed  CAS  Google Scholar 

  20. Chow SC, Weis M, Kass GE et al (1995) Involvement of multiple proteases during fas-mediated apoptosis in T lymphocytes. FEBS Lett 364(2):134–138

    Article  PubMed  CAS  Google Scholar 

  21. Turgeon VL, Houenou LJ (1997) The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system. Brain Res Brain Res Rev 25(1):85–95

    Article  PubMed  CAS  Google Scholar 

  22. Komatsu N, Oda T, Muramatsu T (1998) Involvement of both caspase-like proteases and serine proteases in apoptotic cell death induced by ricin, modeccin, diphtheria toxin, and pseudomonas toxin. J Biochem 124(5):1038–1044

    Article  PubMed  CAS  Google Scholar 

  23. Hara A, Niwa M, Nakashima M et al (1998) Protective effect of apoptosis-inhibitory agent, N-tosyl-l-phenylalanyl chloromethyl ketone against ischemia-induced hippocampal neuronal damage. J Cereb Blood Flow Metab 18(8):819–823

    Article  PubMed  CAS  Google Scholar 

  24. Mitsui C, Sakai K, Ninomiya T et al (2001) Involvement of TLCK-sensitive serine protease in colchicine-induced cell death of sympathetic neurons in culture. J Neurosci Res 66(4):601–611

    Article  PubMed  CAS  Google Scholar 

  25. Gong B, Chen Q, Endlich B et al (1999) Ionizing radiation-induced, bax-mediated cell death is dependent on activation of cysteine and serine proteases. Cell Growth Differ 10(7):491–502

    PubMed  CAS  Google Scholar 

  26. Moffitt KL, Martin SL, Walker B (2007) The emerging role of serine proteases in apoptosis. Biochem Soc Trans 35(3):559–560

    Article  PubMed  CAS  Google Scholar 

  27. Dong Z, Saikumar P, Patel Y et al (2000) Serine protease inhibitors suppress cytochrome c-mediatedcaspase-9 activation and apoptosis during hypoxia-reoxygenation. Biochem J 347(Pt 3):669–677

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Waterhouse NJ, Sedelies KA, Browne KA et al (2005) A central role for Bid in granzyme B-induced apoptosis. J Biol Chem 280(6):4476–4482

    Article  PubMed  CAS  Google Scholar 

  29. Aoshiba K, Yasuda K, Yasui S et al (2001) Serine proteases increase oxidative stress in lung cells. Am J Physiol Lung Cell Mol Physiol 281(3):L556–L564

    PubMed  CAS  Google Scholar 

  30. Ding X, Patel M, Shen D et al (2009) Enhanced HtrA2/Omi expression in oxidative injury to retinal pigment epithelial cells and murine models of neurodegeneration. Invest Ophthalmol Vis Sci 50(10):4957–4966

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mattson MP (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21(2):53–57

    Article  PubMed  CAS  Google Scholar 

  32. Tobaben S, Grohm J, Seiler A et al (2011) Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ 18(2):282–292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Takahashi K (2010) Antioxidative action of N-?-tosyl-l-lysine chloromethyl ketone prevents death of glutathione-depleted cardiomyocytes induced by hydrogen peroxide. JBPC 01(03):164–171

    Article  CAS  Google Scholar 

  34. Seo AY, Joseph A, Dutta D et al (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123(15):2533–2542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Culmsee C, Krieglstein J (2007) Ischaemic brain damage after stroke: new insights into efficient therapeutic strategies. EMBO Rep 8(2):129–133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Ott M, Gogvadze V, Orrenius S et al (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922

    Article  PubMed  CAS  Google Scholar 

  37. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  PubMed  CAS  Google Scholar 

  38. Suen D, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Blomgran R, Zheng L, Stendahl O (2007) Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J Leukoc Biol 81(5):1213–1223

    Article  PubMed  CAS  Google Scholar 

  40. Castino R, Bellio N, Nicotra G et al (2007) Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells. Free Radic Biol Med 42(9):1305–1316

    Article  PubMed  CAS  Google Scholar 

  41. Leist M, Jäättelä M (2001) Triggering of apoptosis by cathepsins. Cell Death Differ 8(4):324–326

    Article  PubMed  CAS  Google Scholar 

  42. Abraham MC, Shaham S (2004) Death without caspases, caspases without death. Trends Cell Biol 14(4):184–193

    Article  PubMed  CAS  Google Scholar 

  43. Hu Y, Huang M, Wang P et al (2013) Ucf-101 protects against cerebral oxidative injury and cognitive impairment in septic rat. Int Immunopharmacol 16(1):108–113

    Article  PubMed  CAS  Google Scholar 

  44. Rideout HJ, Zang E, Yeasmin M et al (2001) Inhibitors of trypsin-like serine proteases prevent DNA damage-induced neuronal death by acting upstream of the mitochondrial checkpoint and of p53 induction. Neuroscience 107(2):339–352

    Article  PubMed  CAS  Google Scholar 

  45. Wang Y, Luo W, Reiser G (2008) Trypsin and trypsin-like proteases in the brain: proteolysis and cellular functions. Cell Mol Life Sci 65(2):237–252

    Article  PubMed  CAS  Google Scholar 

  46. Solomon DH, O’Brian CA, Weinstein IB (1985) N-alpha-tosyl-l-lysine chloromethyl ketone and N-alpha-tosyl-l-phenylalanine chloromethyl ketone inhibit protein kinase C. FEBS Lett 190(2):342–344

    Article  PubMed  CAS  Google Scholar 

  47. Kupfer A, Gani V, Jimenez JS et al (1979) Affinity labeling of the catalytic subunit of cyclic AMP-dependent protein kinase by N alpha-tosyl-l-lysine chloromethyl ketone. Proc Natl Acad Sci 76(7):3073–3077

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Saldeen J, Welsh N (1994) Interleukin-1β induced Activation of NF-κB in insulin-producing RINm5F cells is prevented by the protease inhibitor Nα-<i>p-tosyl-l-lysine chloromethylketone. Biochem Biophy Res Commun 203(1):149–155

    Article  CAS  Google Scholar 

  49. Kim H, Lee HS, Chang KT et al (1995) Chloromethyl ketones block induction of nitric oxide synthase in murine macrophages by preventing activation of nuclear factor-kappa B. J Immunol 154(9):4741–4748

    PubMed  CAS  Google Scholar 

  50. Zhou Q, Salvesen G (1997) Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity. Biochem J 324:361–364

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Frydrych I, Mlejnek P (2008) Serine protease inhibitors N-alpha-tosyl-l-lysinyl-chloromethylketone (TLCK) and N-tosyl-l-phenylalaninyl-chloromethylketone (TPCK) are potent inhibitors of activated caspase proteases. J Cell Biochem 103(5):1646–1656

    Article  PubMed  CAS  Google Scholar 

  52. Diemert S, Dolga AM, Tobaben S et al (2012) Impedance measurement for real time detection of neuronal cell death. J Neurosci Methods 203(1):69–77

    Article  PubMed  CAS  Google Scholar 

  53. Kazhdan I, Long L, Montellano R et al (2006) Targeted gene therapy for breast cancer with truncated Bid. Cancer Gene Ther 13(2):141–149

    Article  PubMed  CAS  Google Scholar 

  54. Gohil VM, Sheth SA, Nilsson R et al (2010) Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol 28(3):249–255

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the excellent technical support by Mrs. Katharina Elsässer and Eileen Daube and the support by our student Lucia von Wachter for the mitochondrial counting. We thank Wei Wan and Shuna Wang for their technical support. Furthermore, we thank Mrs. Emma Esser for careful editing of the manuscript and Roche Diagnostics GmbH for providing support with the xCELLigence system.

Conflict of interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Culmsee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reuther, C., Ganjam, G.K., Dolga, A.M. et al. The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise. Apoptosis 19, 1545–1558 (2014). https://doi.org/10.1007/s10495-014-1027-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1027-7

Keywords

Navigation