Skip to main content
Log in

Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Campylobacter jejuni is the most common cause of bacterial gastroenteritis in humans. The synthesis of cytolethal distending toxin appears essential in the infection process. In this work we evaluated the sequence of lethal events in HeLa cells exposed to cell lysates of two distinct strains, C. jejuni ATCC 33291 and C. jejuni ISS3. C. jejuni cell lysates (CCLys) were added to HeLa cell monolayers which were analysed to detect DNA content, death features, bcl-2 and p53 status, mitochondria/lysosomes network and finally, CD54 and CD59 alterations, compared to cell lysates of C. jejuni 11168H cdtA mutant. We found mitochondria and lysosomes differently targeted by these bacterial lysates. Death, consistent with apoptosis for C. jejuni ATCC 33291 lysate, occurred in a slow way (>48 h); concomitantly HeLa cells increase their endolysosomal compartment, as a consequence of toxin internalization besides a simultaneous and partial lysosomal destabilization. C. jejuni CCLys induces death in HeLa cells mainly via a caspase-dependent mechanism although a p53 lysosomal pathway (also caspase-independent) seems to appear in addition. In C. jejuni ISS3-treated cells, the p53-mediated oxidative degradation of mitochondrial components seems to be lost, inducing the deepest lysosomal alterations. Furthermore, CD59 considerably decreases, suggesting both a degradation or internalisation pathway. CCLys-treated HeLa cells increase CD54 expression on their surface, because of the action of lysate as its double feature of toxin and bacterial peptide. In conclusion, we revealed that C. jejuni CCLys-treated HeLa cells displayed different features, depending on the particular strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sherman PM, Ossa JC, Wine E (2010) Bacterial infections: new and emerging enteric pathogens. Curr Opin Gastroenterol 26:1–4

    Article  PubMed  Google Scholar 

  2. Yabe S, Higuchi W, Iwao Y, Takano T, Razvina O, Reva I, Nishiyama A, Yamamoto T (2010) Molecular typing of Campylobacter jejuni and C. coli from chickens and patients with gastritis or Guillain-Barré syndrome based on multilocus sequence types and pulsed-field gel electrophoresis patterns. Microbiol Immunol 54:362–367

    Article  CAS  PubMed  Google Scholar 

  3. Kopecko DJ, Hu L, Zaal KJM (2001) Campylobacter jejuni -microtubule-dependent invasion. Trends Microbiol 9:389–396

    Article  CAS  PubMed  Google Scholar 

  4. Lindmark B, Rompikuntal PK, Vaitkevicius K, Song T, Mizunoe Y, Uhlin BE, Guerry P, Wai SN (2009) Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol 9:220–230

    Article  PubMed Central  PubMed  Google Scholar 

  5. Pickett CL, Pesci EC, Cottle DL, Russell G, Erden AN, Zeytin H (1996) Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness Campylobacter sp. cdtB gene. Infect Immun 64:2070–2078

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Pickett CL, Whitehouse CA (1999) The cytolethal distending toxin family. Trends Microbiol 7:292–297

    Article  CAS  PubMed  Google Scholar 

  7. Lara-Tejero M, Galán JE (2001) CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 69:4358–4365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mao X, DiRienzo JM (2002) Functional studies of the recombinant subunits of cytolethal distending holotoxin. Cell Microbiol 4:245–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Whitehouse CA, Balbo PB, Pesci EC, Cottle DL, Mirabito PM, Pickett CL (1998) Campylobacter jejuni cytolethal distending toxin causes a G2 phase cell cycle block. Infect Immun 66:1934–1940

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Shenker BJ, Hoffmaster RH, Zekavat A, Yamaguchi N, Lally ET, Demuth DR (2001) Induction of apoptosis in human T cells by Actinobacillus actinomycetemcomitans cytolethal distending toxin is a consequence of G2 arrest of the cell cycle. J Immunol 167:435–441

    Article  CAS  PubMed  Google Scholar 

  11. Svensson LA, Tarkowski A, Thelestam M, Lagergård T (2001) The impact of Haemophilus ducrey cytolethal distending toxin on cells involved in the immune response. Microb Pathog 30:157–166

    Article  CAS  PubMed  Google Scholar 

  12. Mathiasen IS, Jäättelä M (2002) Triggering caspase-independent cell death to combat cancer. Trends Mol Med 8:212–220

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1:289–298

    Article  CAS  PubMed  Google Scholar 

  14. Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E, Radinsky R (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15:3032–3040

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Müller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M, Krammer PH (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188:2033–2045

    Article  PubMed Central  PubMed  Google Scholar 

  16. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    Article  CAS  PubMed  Google Scholar 

  17. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    Article  CAS  PubMed  Google Scholar 

  18. Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR (2000) p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 275:7337–7342

    Article  CAS  PubMed  Google Scholar 

  19. Nalca A, Rangnekar VM (1998) The G1-phase growth arresting action of interleukin-1 is independent of p53 and p21/WAF1 function. J Biol Chem 273:30517–30523

    Article  CAS  PubMed  Google Scholar 

  20. Gotlieb WH, Watson JM, Rezai A, Johnson M, Martínez-Maza O, Berek JS (1994) Cytokine-induced modulation of tumor suppressor gene expression in ovarian cancer cells: up-regulation of p53 gene expression and induction of apoptosis by tumor necrosis factor-alpha. Am J Obstet Gynecol 170:1121–1128

    Article  CAS  PubMed  Google Scholar 

  21. Ma W, Pobe JS (1998) Human endothelial cells effectively costimulate cytokine production by, but not differentiation of, naive CD4+ T cells. J Immunol 161:2158–2167

    CAS  PubMed  Google Scholar 

  22. Takami A, Zeng W, Wang H, Matsuda T, Nakao S (1999) Cytotoxicity against lymphoblastoid cells mediated by a T-cell clone from an aplastic anaemia patient: role of CD59 on target cells. Br J Haematol 107:791–796

    Article  CAS  PubMed  Google Scholar 

  23. Liversidge J, Dawson R, Hoey S, McKay D, Grabowski P, Forrester JV (1996) CD59 and CD48 expressed by rat retinal pigment epithelial cells are major ligands for the CD2-mediated alternative pathway of T cell activation. J Immunol 156:3696–3703

    CAS  PubMed  Google Scholar 

  24. Sampaziotis F, Kokotas S, Gorgoulis VG (2002) p53 possibly upregulates the expression of CD58 (LFA-3) and CD59 (MIRL). Med Hypotheses 58:136–140

    Article  CAS  PubMed  Google Scholar 

  25. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  CAS  PubMed  Google Scholar 

  26. Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248

    Article  CAS  PubMed  Google Scholar 

  27. Bang DD, Nielsen EM, Scheutz F, Pedersen K, Handberg K, Madsen M (2003) PCR detection of seven virulence and toxin genes of Campylobacter jejuni and Campylobacter coli isolates from Danish pigs and cattle and cytolethal distending toxin production of the isolates. J Appl Microbiol 94:1003–1014

    Article  CAS  PubMed  Google Scholar 

  28. Zamai L, Galeotti L, Del Zotto G, Canonico B, Mirandola P, Papa S (2009) Identification of a NCR+/NKG2D+/LFA-1low/CD94 immature human NK cell subset. Cytometry A 75:893–901

    Article  PubMed  Google Scholar 

  29. Brando B, Barnett D, Janossy G, Mandy F, Autran B, Rothe G, Scarpati B, D’Avanzo G, D’Hautcourt JL, Lenkei R, Schmitz G, Kunkl A, Chianese R, Papa S, Gratama JW (2000) Cytofluorometric methods for assessing absolute numbers of cell subsets in blood. European Working Group on Clinical Cell Analysis. Cytometry 42:327–346

    Article  CAS  PubMed  Google Scholar 

  30. Gratama JW, Menéndez P, Kraan J, Orfao A (2000) Loss of CD34(+) hematopoietic progenitor cells due to washing can be reduced by the use of fixative-free erythrocyte lysing reagents. J Immunol Methods 239:13–23

    Article  CAS  PubMed  Google Scholar 

  31. Luchetti F, Canonico B, Mannello F, Masoni C, D’Emilio A, Battistelli M, Papa S, Falcieri E (2007) Melatonin reduces early changes in intramitochondrial cardiolipin during apoptosis in U937 cell line. Toxicol In Vitro 21:293–301

    Article  CAS  PubMed  Google Scholar 

  32. Luchetti F, Betti M, Canonico B, Arcangeletti M, Ferri P, Galli F, Papa S (2009) ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells. Free Radic Biol Med 46:339–351

    Article  CAS  PubMed  Google Scholar 

  33. Canonico B, Betti M, Luchetti F, Battistelli M, Falcieri E, Ferri P, Zamai L, Barnett D, Papa S (2010) Flow cytometric profiles, biomolecular and morphological aspects of transfixed leukocytes and red cells. Cytometry B Clin Cytom 78:267–278

    PubMed  Google Scholar 

  34. Donev RM, Cole DS, Sivasankar B, Hughes TR, Morgan BP (2006) p53 regulates cellular resistance to complement lysis through enhanced expression of CD59. Cancer Res 66:2451–2458

    Article  CAS  PubMed  Google Scholar 

  35. Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AV, Crossett B, Falconer L, Kolarich D, Djordjevic SP, Højrup P, Packer NH, Larsen MR, Cordwell SJ (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10:M000031-MCP201

  36. Volokhov D, Chizhikov V, Chumakov K, Rasooly A (2003) Microarray-based identification of thermophilic Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis. J Clin Microbiol 41:4071–4080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Asakura M, Samosornsuk W, Hinenoya A, Misawa N, Nishimura K, Matsuhisa A, Yamasaki S (2008) Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification of Campylobacter jejuni, Campylobacter coli and Campylobacter fetus. FEMS Immunol Med Microbiol 52:260–266

    Article  CAS  PubMed  Google Scholar 

  38. Nakajima T, Hirayama J, Tazumi A, Hayashi K, Tasaki E, Asakura M, Yamasaki S, Moore JE, Millar BC, Matsuda M (2012) Comparative analysis of Campylobacter lari cytolethal distending toxin (CDT) effect on HeLa cells. J Basic Microbiol 52:559–565

    Article  CAS  PubMed  Google Scholar 

  39. Karlyshev AV, Wren BW (2001) Detection and initial characterization of novel capsular polysaccharide among diverse Campylobacter jejuni strains using alcian blue dye. J Clin Microbiol 39:279–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hickey TE, McVeigh AL, Scott DA, Michielutti RE, Bixby A, Carroll SA, Bourgeois AL, Guerry P (2000) Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun 68:6535–6541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Heywood W, Henderson B, Nair SP (2005) Cytolethal distending toxin: creating a gap in the cell cycle. J Med Microbiol 54:207–216

    Article  CAS  PubMed  Google Scholar 

  42. McSweeney LA, Dreyfus LA (2004) Nuclear localization of the Escherichia coli cytolethal distending toxin CdtB subunit. Cell Microbiol 6:447–458

    Article  CAS  PubMed  Google Scholar 

  43. Cortes-Bratti X, Karlsson C, Lagergård T, Thelestam M, Frisan T (2001) The Haemophilus ducreyi cytolethal distending toxin induces cell-cycle arrest and apoptosis via the DNA damage checkpoint pathways. J Biol Chem 276:5296–5302

    Article  CAS  PubMed  Google Scholar 

  44. Sugai M, Kawamoto T, Pérès SY, Ueno Y, Komatsuzawa H, Fujiwara T, Kurihara H, Suginaka H, Oswald E (1998) The cell cycle-specific growth-inhibitory factor produced by Actinobacillus actinomycetemcomitans is a cytolethal distending toxin. Infect Immun 66:5008–5019

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Sato T, Koseki T, Yamato K, Saiki K, Konishi K, Yoshikawa M, Ishikawa I, Nishihara T (2002) p53-independent expression of p21(CIP1/WAF1) in plasmacytic cells during G(2) cell cycle arrest induced by Actinobacillus actinomycetemcomitans cytolethal distending toxin. Infect Immun 70:528–534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Deng K, Latimer JL, Lewis DA, Hansen EJ (2001) Investigation of the interaction among the components of the cytolethal distending toxin of Haemophilus ducreyi. Biochem Biophys Res Commun 285:609–615

    Article  CAS  PubMed  Google Scholar 

  47. Ueno Y, Ohara M, Kawamoto T, Fujiwara T, Komatsuzawa H, Oswald E, Sugai M (2006) Biogenesis of the Actinobacillus actinomycetemcomitans cytolethal distending toxin holotoxin. Infect Immun 74:3480–3487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lindmark B, Rompikuntal PK, Vaitkevicius K, Song T, Mizunoe Y, Uhlin BE, Guerry P, Wai SN (2009) Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol 9:220–230

    Article  PubMed Central  PubMed  Google Scholar 

  49. Elmi A, Watson E, Sandu P, Gundogdu O, Mills DC, Inglis NF, Manson E, Imrie L, Bajaj-Elliott M, Wren BW, Smith DGE, Dorrell N (2012) Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect Immun 80:4089–4098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 19:231–241

    Article  Google Scholar 

  51. Creagh EM, Conroy H, Martin SJ (2003) Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193:10–21

    Article  CAS  PubMed  Google Scholar 

  52. De Melo MA, Gabbiani G, Pechère JC (1989) Cellular events and intracellular survival of Campylobacter jejuni during infection of HEp-2 cells. Infect Immun 57:2214–2222

    PubMed Central  PubMed  Google Scholar 

  53. Gao JX, Ma BL, Xie YL, Huang DS (1991) Electron microscopic appearance of the chronic Campylobacter jejuni enteritis of mice. Chin Med J (Engl) 104:1005–1010

    CAS  Google Scholar 

  54. Humphrey CD, Montag DM, Pittman FE (1986) Morphologic observations of experimental Campylobacter jejuni infection in the hamster intestinal tract. Am J Pathol 122:152–159

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Newell DG, Pearson A (1984) The invasion of epithelial cell lines and the intestinal epithelium of infant mice by Campylobacter jejuni/coli. J Diarrhoeal Dis Res 2:19–26

    CAS  PubMed  Google Scholar 

  56. Blanke SR (2005) Micro-managing the executioner: pathogen targeting of mitochondria. Trends Microbiol 13:64–71

    Article  CAS  PubMed  Google Scholar 

  57. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  58. Brunk UT, Dalen H, Roberg K, Hellquist HB (1997) Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med 23:616–626

    Article  CAS  PubMed  Google Scholar 

  59. Brunk UT, Svensson I (1999) Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. Redox Rep 4:3–11

    Article  CAS  PubMed  Google Scholar 

  60. Neuzil J, Svensson I, Weber T, Weber C, Brunk UT (1999) alpha-tocopheryl succinate-induced apoptosis in Jurkat T cells involves caspase-3 activation, and both lysosomal and mitochondrial destabilisation. FEBS Lett 445:295–300

    Article  CAS  PubMed  Google Scholar 

  61. Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, Brunk UT (2000) Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 470:35–39

    Article  CAS  PubMed  Google Scholar 

  62. Yuan XM, Li W, Brunk UT, Dalen H, Chang YH, Sevanian A (2000) Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic Biol Med 28:208–218

    Article  CAS  PubMed  Google Scholar 

  63. Kågedal K, Zhao M, Svensson I, Brunk UT (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 359:335–343

    Article  PubMed Central  PubMed  Google Scholar 

  64. Antunes F, Cadenas E, Brunk UT (2001) Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J 356:549–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Zdolsek JM, Olsson GM, Brunk UT (1990) Photooxidative damage to lysosomes of cultured macrophages by acridine orange. Photochem Photobiol 51:67–76

    Article  CAS  PubMed  Google Scholar 

  66. Brunk UT, Neuzil J, Eaton JW (2001) Lysosomal involvement in apoptosis. Redox Rep 6:91–97

    Article  CAS  PubMed  Google Scholar 

  67. Zhao M, Brunk UT, Eaton JW (2001) Delayed oxidant-induced cell death involves activation of phospholipase A2. FEBS Lett 509:399–404

    Article  CAS  PubMed  Google Scholar 

  68. Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ (2000) Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM, Turk V, Salvesen GS (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276:3149–3157

    Article  CAS  PubMed  Google Scholar 

  70. Gorgoulis VG, Zacharatos P, Kotsinas A, Kletsas D, Mariatos G, Zoumpourlis V, Ryan KM, Kittas C, Papavassiliou AG (2003) p53 activates ICAM-1 (CD54) expression in an NF-kappaB-independent manner. EMBO J 22:1567–1578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Tamai R, Asai Y, Ogawa T (2005) Requirement for intercellular adhesion molecule 1 and caveolae in invasion of human oral epithelial cells by Porphyromonas gingivalis. Infect Immun 73:6290–6298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Yakes FM, Wamil BD, Sun F, Yan HP, Carter CE, Hellerqvist CG (2000) CM101 treatment overrides tumor-induced immunoprivilege leading to apoptosis. Cancer Res 60:5740–5746

    CAS  PubMed  Google Scholar 

  73. Amano A, Takeuchi H, Furuta N (2010) Outer membrane vesicles function as offensive weapons in hoste-parasite interactions. Microbes Infect 12:791–798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Abdi Elmi and Dr. Ozan Gundogdu (Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom) which kindly provided C. jejuni 11168H cdtA mutant.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Canonico.

Additional information

S. Papa and W. Baffone are equal senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canonico, B., Campana, R., Luchetti, F. et al. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells. Apoptosis 19, 1225–1242 (2014). https://doi.org/10.1007/s10495-014-1005-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1005-0

Keywords

Navigation