Skip to main content
Log in

The roles of autophagy in development and stress responses in Arabidopsis thaliana

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Autophagy is a dynamic process that involves the recycling process of the degradation of intracellular materials. Over the past decade, our molecular and physiological understanding of plant autophagy has greatly been increased. Most essential autophagic machineries are conserved from yeast to plants. The roles that autophagy-related genes (ATGs) family play in the lifecycle of the Arabidopsis are proved to be similar to that in mammal. Autophagy is activated during certain stages of development, senescence or in response to starvation, or environmental stress in Arabidopsis. In the progression of autophagy, ATGs act as central signaling regulators and could develop sophisticated mechanisms to survive when plants are suffering unfavorable environments. It will facilitate further understanding of the molecular mechanisms of autophagy in plant. In this review, we will discuss recent advances in our understanding of autophagy in Arabidopsis, areas of controversy, and highlight potential future directions in autophagy research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACBP3:

Acyl-CoA-binding protein

Atg:

Autophagy-related gene

CMA:

Chaperon-mediated-autophagy

HR:

Hypersensitive response

3-MA:

3-Methyladenine

PAS:

Pre-autophagosomal structure

PCD:

Programmed cell death

PE:

Phosphatidylethanolamine

PI3P:

Phosphatidyl-inositol-3 phosphate

PKA:

Protein kinase A

RCB:

Rubisco-containing bodies

ROS:

Reactive oxygen species

SNF:

Sucrose non-fermenting

TOR:

Target of rapamycin

TSPO:

Tryptophan-rich sensory protein-related

VPS:

Vacuolar protein sorting

PO:

Peroxisomes

References

  1. Deter RL, de Duve C (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33:437–449

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237

    PubMed  CAS  Google Scholar 

  3. Avin-Wittenberg T, Honig A, Galili G (2012) Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 249:285–299

    PubMed  CAS  Google Scholar 

  4. Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL (2008) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4:851–865

    PubMed  CAS  Google Scholar 

  5. Massey AC, Zhang C, Cuervo AM (2006) Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73:205–235

    PubMed  CAS  Google Scholar 

  6. Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275:31505–31513

    PubMed  CAS  Google Scholar 

  7. Blommaart E, Luiken J, Meijer A (1997) Autophagic proteolysis: control and specificity. Histochem J 29:365–385

    PubMed  CAS  Google Scholar 

  8. van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    PubMed  Google Scholar 

  9. Till A, Lakhani R, Burnett SF, Subramani S (2012) Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol 2012:512721

    PubMed Central  PubMed  Google Scholar 

  10. Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143:291–299

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7:279–296

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    PubMed  CAS  Google Scholar 

  13. Li ZY, Yang Y, Ming M, Liu B (2011) Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun 414:5–8

    PubMed  CAS  Google Scholar 

  14. Phillips AR, Suttangkakul A, Vierstra RD (2008) The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178:1339–1353

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138:2097–2110

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42:535–546

    PubMed  CAS  Google Scholar 

  17. Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T et al (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16:2967–2983

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Bassham DC (2007) Plant autophagy—more than a starvation response. Curr Opin Plant Biol 10:587–593

    PubMed  CAS  Google Scholar 

  19. Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ et al (2006) Autophagy in development and stress responses of plants. Autophagy. 2:2–11

    PubMed  CAS  Google Scholar 

  20. Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J et al (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133:1251–1263

    PubMed  CAS  Google Scholar 

  21. Rose TL, Bonneau L, Der C, Marty-Mazars D, Marty F (2006) Starvation-induced expression of autophagy-related genes in Arabidopsis. Biol Cell 98:53–67

    PubMed  CAS  Google Scholar 

  22. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    PubMed  CAS  Google Scholar 

  23. Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8:165–173

    PubMed  CAS  Google Scholar 

  24. Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA (2007) ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy. 3:106–116

    PubMed  CAS  Google Scholar 

  25. Pallauf K, Rimbach G (2013) Autophagy, polyphenols and healthy ageing. Ageing Res Rev 12:237–252

    PubMed  CAS  Google Scholar 

  26. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Kwon SI, Park OK (2008) Autophagy in plants. J Plant Biol 51:313–320

    CAS  Google Scholar 

  28. Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277:33105–33114

    PubMed  CAS  Google Scholar 

  29. Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D et al (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129:1181–1193

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Yano K, Suzuki T, Moriyasu Y (2007) Constitutive autophagy in plant root cells. Autophagy. 3:360–362

    PubMed  CAS  Google Scholar 

  32. Oh-ye Y, Inoue Y, Moriyasu Y (2011) Detecting autophagy in Arabidopsis roots by membrane-permeable cysteine protease inhibitor E-64d and endocytosis tracer FM4-64. Plant Signal Behav 6:1946–1949

    PubMed Central  PubMed  Google Scholar 

  33. Nakayama M, Kaneko Y, Miyazawa Y, Fujii N, Higashitani N, Wada S et al (2012) A possible involvement of autophagy in amyloplast degradation in columella cells during hydrotropic response of Arabidopsis roots. Planta 236:999–1012

    PubMed  CAS  Google Scholar 

  34. Suttangkakul A, Li F, Chung T, Vierstra RD (2011) The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23:3761–3779

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Wang Y, Yu B, Zhao J, Guo J, Li Y, Han S et al (2013) Autophagy contributes to leaf starch degradation. Plant Cell 25:1383–1399

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Wang Y, Liu Y (2013) Autophagic degradation of leaf starch in plants. Autophagy. 9:1247–1248

    PubMed  CAS  Google Scholar 

  37. Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T et al (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Izumi M, Wada S, Makino A, Ishida H (2010) The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol 154:1196–1209

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Patel S, Dinesh-Kumar SP (2008) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy. 4:20–27

    PubMed  CAS  Google Scholar 

  40. Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J et al (2007) Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 17:249–263

    PubMed  CAS  Google Scholar 

  41. Izumi M, Hidema J, Ishida H. (2013) Deficiency of autophagy leads to significant changes of metabolic profiles in Arabidopsis. Plant Signal Behav 8

  42. Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006) AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 47:1641–1652

    PubMed  CAS  Google Scholar 

  43. Lee TA, Vande Wetering SW, Brusslan JA (2013) Stromal protein degradation is incomplete in Arabidopsis thaliana autophagy mutants undergoing natural senescence. BMC Res Notes 6:17

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Zhang Y, Li S, Zhou LZ, Fox E, Pao J, Sun W et al (2011) Overexpression of Arabidopsis thaliana PTEN caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3-phosphate dynamics. Plant J 68:1081–1092

    PubMed  CAS  Google Scholar 

  45. Fujiki Y, Yoshimoto K, Ohsumi Y (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol 143:1132–1139

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Kwon SI, Cho HJ, Park OK (2010) Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation. Autophagy. 6:1187–1189

    PubMed  CAS  Google Scholar 

  47. Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK (2010) The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J 64:151–164

    PubMed  CAS  Google Scholar 

  48. Honig A, Avin-Wittenberg T, Ufaz S, Galili G (2012) A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell 24:288–303

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy. 5:954–963

    PubMed  CAS  Google Scholar 

  50. Han S, Yu B, Wang Y, Liu Y (2011) Role of plant autophagy in stress response. Protein Cell 2:784–791

    PubMed  Google Scholar 

  51. Zhu J-K (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    PubMed  CAS  Google Scholar 

  52. Liu Y, Bassham DC (2013) Degradation of the endoplasmic reticulum by autophagy in plants. Autophagy. 9:622–623

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Pu Y, Bassham DC (2013) Links between ER stress and autophagy in plants. Plant Signal Behav 8:e24297

    PubMed Central  PubMed  Google Scholar 

  54. Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell Online 11:1195–1206

    CAS  Google Scholar 

  55. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  56. Song W-Y, Zhang Z-B, Shao H-B, Guo X-L, Cao H-X, Zhao H-B et al (2008) Relationship between calcium decoding elements and plant abiotic-stress resistance. Int J Biol Sci 4:116

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    PubMed  CAS  Google Scholar 

  58. Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G (2008) An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 59:4029–4043

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Kroemer G, El-Deiry W, Golstein P, Peter M, Vaux D, Vandenabeele P et al (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12:1463–1467

    PubMed  CAS  Google Scholar 

  60. Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M et al (2011) Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J 66:818–830

    PubMed  CAS  Google Scholar 

  61. Lai Z, Wang F, Zheng Z, Fan B, Chen Z (2011) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J 66:953–968

    PubMed  CAS  Google Scholar 

  62. Wang Y, Wu Y, Tang D (2011) The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Signal Behav 6:1408–1410

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Lenz HD, Vierstra RD, Nurnberger T, Gust AA (2011) ATG7 contributes to plant basal immunity towards fungal infection. Plant Signal Behav 6:1040–1042

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Hofius D, Mundy J, Petersen M (2009) Self-consuming innate immunity in Arabidopsis. Autophagy. 5:1206–1207

    PubMed  Google Scholar 

  65. Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O et al (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137:773–783

    PubMed  CAS  Google Scholar 

  66. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R et al (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Wang Y, Nishimura MT, Zhao T, Tang D (2011) ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J 68:74–87

    PubMed  CAS  Google Scholar 

  68. Lenz HD, Haller E, Melzer E, Gust AA, Nurnberger T (2011) Autophagy controls plant basal immunity in a pathogenic lifestyle-dependent manner. Autophagy. 7:773–774

    PubMed  Google Scholar 

  69. Hayward AP, Tsao J, Dinesh-Kumar SP (2009) Autophagy and plant innate immunity: defense through degradation. Semin Cell Dev Biol 20:1041–1047

    PubMed  CAS  Google Scholar 

  70. Kwon SI, Cho HJ, Kim SR, Park OK (2013) The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol 161:1722–1736

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    PubMed  CAS  Google Scholar 

  72. Huang J, Lam GY, Brumell JH (2011) Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 14:2215–2231

    PubMed  CAS  Google Scholar 

  73. Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090

    PubMed  CAS  Google Scholar 

  74. Heo J-M, Rutter J (2011) Ubiquitin-dependent mitochondrial protein degradation. Int J Biochem Cell Biol 43:1422–1426

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase–-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    PubMed  CAS  Google Scholar 

  76. Torres MA, Jones JD, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Dong J, Chen W (2013) The role of autophagy in chloroplast degradation and chlorophagy in immune defenses during Pst DC3000 (AvrRps4) infection. PLoS One 8:e73091

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Schrader M (2009) Anniversaries, peroxisomes and reactive oxygen species. Histochem Cell Biol 131:435–436

    PubMed  CAS  Google Scholar 

  79. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    PubMed  CAS  Google Scholar 

  80. del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    PubMed  Google Scholar 

  81. Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A et al (2008) Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Farre J-C, Manjithaya R, Mathewson RD, Subramani S (2008) PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell 14:365–376

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Rana RM, Dong S, Ali Z, Huang J, Zhang HS (2012) Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Genet Mol Res (GMR) 11:3676–3687

    CAS  Google Scholar 

  84. Izumi M, Hidema J, Makino A, Ishida H (2013) Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol 161:1682–1693

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Dobrenel T, Marchive C, Azzopardi M, Clement G, Moreau M, Sormani R et al (2013) Sugar metabolism and the plant target of rapamycin kinase: a sweet operaTOR? Front Plant Sci. 4:93

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Xiong Y, Contento AL, Bassham DC (2007) Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy. 3:257–258

    PubMed  CAS  Google Scholar 

  87. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  88. Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218

    PubMed  CAS  Google Scholar 

  89. Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, (Saccharomyces cerevisiae). FEBS Lett 581:2156–2161

    PubMed  CAS  Google Scholar 

  90. Toyooka K, Moriyasu Y, Goto Y, Takeuchi M, Fukuda H, Matsuoka K (2006) Protein aggregates are transported to vacuoles by macroautophagic mechanism in nutrient-starved plant cells. Autophagy. 2:96–106

    PubMed  CAS  Google Scholar 

  91. van Doorn WG, Papini A (2013) Ultrastructure of autophagy in plant cells: a review. Autophagy. 9:1922–1936

    PubMed  Google Scholar 

  92. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Bassham DC (2009) Function and regulation of macroautophagy in plants. Biochim Biophys Acta (BBA) 1793:1397–1403

    CAS  Google Scholar 

  94. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139

    PubMed  CAS  Google Scholar 

  95. Suzuki K, Ohsumi Y (2010) Current knowledge of the pre-autophagosomal structure (PAS). FEBS Lett 584:1280–1286

    PubMed  CAS  Google Scholar 

  96. Liu Y, Bassham DC (2010) TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One 5:e11883

    PubMed Central  PubMed  Google Scholar 

  97. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Robaglia C, Thomas M, Meyer C (2012) Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol 15:301–307

    PubMed  CAS  Google Scholar 

  99. Takatsuka C, Inoue Y, Matsuoka K, Moriyasu Y (2004) 3-Methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol 45:265–274

    PubMed  CAS  Google Scholar 

  100. Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90:313–323

    PubMed  CAS  Google Scholar 

  101. Garrett A, Bruce V, Maureen H (2005) The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol 3:12

    Google Scholar 

  102. Deprost D, Truong H-N, Robaglia C, Meyer C (2005) An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem Biophys Res Commun 326:844–850

    PubMed  CAS  Google Scholar 

  103. Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C et al (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99:6422–6427

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32:2–11

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast Saccharomyces cerevisiae. J Biol Chem 273:22284–22291

    PubMed  CAS  Google Scholar 

  106. Sinha S, Levine B (2008) The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27:S137–S148

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    PubMed  CAS  Google Scholar 

  108. Harrison-Lowe NJ, Olsen LJ (2008) Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy 4(3)

  109. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    PubMed  CAS  Google Scholar 

  110. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T et al (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C et al (2010) ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142:590–600

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T et al (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302

    PubMed  CAS  Google Scholar 

  115. Chung T, Phillips AR, Vierstra RD (2010) ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J 62:483–493

    PubMed  CAS  Google Scholar 

  116. Ketelaar T, Voss C, Dimmock SA, Thumm M, Hussey PJ (2004) Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett 567:302–306

    PubMed  CAS  Google Scholar 

  117. Xiao S, Chye ML (2010) The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability. Autophagy. 6:802–804

    PubMed  Google Scholar 

  118. Fujioka Y, Noda NN, Fujii K, Yoshimoto K, Ohsumi Y, Inagaki F (2008) In vitro reconstitution of plant Atg8 and Atg12 conjugation systems essential for autophagy. J Biol Chem 283:1921–1928

    PubMed  CAS  Google Scholar 

  119. Slavikova S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokovski S et al (2005) The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56:2839–2849

    PubMed  CAS  Google Scholar 

  120. Okuda M, Nang MP, Oshima K, Ishibashi Y, Zheng SH, Yuasa T et al (2011) The ethylene signal mediates induction of GmATG8i in soybean plants under starvation stress. Biosci Biotechnol Biochem 75:1408–1412

    PubMed  CAS  Google Scholar 

  121. Kim SH, Kwon C, Lee JH, Chung T (2012) Genes for plant autophagy: functions and interactions. Mol Cells 34:413–423

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    PubMed  CAS  Google Scholar 

  123. Pourcel L, Irani NG, Lu Y, Riedl K, Schwartz S, Grotewold E (2010) The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol Plant 3:78–90

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Vanhee C, Batoko H (2011) Arabidopsis TSPO and porphyrins metabolism: a transient signaling connection? Plant Signal Behav 6:1383–1385

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Svenning S, Lamark T, Krause K, Johansen T (2011) Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy. 7:993–1010

    PubMed Central  PubMed  CAS  Google Scholar 

  126. Zhou J, Wang J, Cheng Y, Chi YJ, Fan B, Yu JQ et al (2013) NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet 9:e1003196

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M, Tsutsumi C et al (2013) The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. Plant Cell 25:2236–2252

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Vanhee C, Batoko H (2011) Autophagy involvement in responses to abscisic acid by plant cells. Autophagy. 7:655–656

    PubMed  CAS  Google Scholar 

  129. Izumi M, Ishida H (2011) The changes of leaf carbohydrate contents as a regulator of autophagic degradation of chloroplasts via Rubisco-containing bodies during leaf senescence. Plant Signal Behav. 6:685–687

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H (2011) The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell. 23:785–805

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Contento AL, Xiong Y, Bassham DC (2005) Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 42:598–608

    PubMed  CAS  Google Scholar 

  132. Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J et al (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell. 22:1463–1482

    PubMed Central  PubMed  CAS  Google Scholar 

  133. Devarenne TP (2011) The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8 h. Biochem Biophys Res Commun. 412:699–703

    PubMed  CAS  Google Scholar 

  134. Ishida H, Yoshimoto K (2008) Chloroplasts are partially mobilized to the vacuole by autophagy. Autophagy. 4:961–962

    PubMed  CAS  Google Scholar 

  135. Suzuki NN, Yoshimoto K, Fujioka Y, Ohsumi Y, Inagaki F (2005) The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy. 1:119–126

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Jinku Bao (Sichuan University) and Zhi Shi (Sichuan University) for their useful suggestions. This work was supported by the National Nature Science Foundation of China (91017004) and Doctoral Foundation of the Ministry of Education (20110181110059 and 20120181130008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghui Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, X., Pu, X., Qin, G. et al. The roles of autophagy in development and stress responses in Arabidopsis thaliana . Apoptosis 19, 905–921 (2014). https://doi.org/10.1007/s10495-014-0981-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0981-4

Keywords

Navigation