Skip to main content
Log in

Vertebrate cell death in energy-limited conditions and how to avoid it: what we might learn from mammalian hibernators and other stress-tolerant vertebrates

  • Unusual Model Systems for Cell Death Research
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Dormancy in vertebrates may expose cells to acidosis, hypoxia/anoxia, oxidative damage, and extremes in temperature. All of these insults are known to be pro-apoptotic in typical vertebrate cells, especially mammals. Since dormancy is presumably the result of a need for energy conservation, the inherent energetic demand of replenishing cells that underwent apoptosis seems at odds with this strategy. This review will discuss processes to mitigate apoptosis and how these processes might be regulated in stress-tolerant vertebrates such as mammalian hibernators. As data directly addressing such issues are scarce and often conflicting, an apparently complex regulation of apoptosis seems to be at work. For example, apoptosis is mitigated during dormancy, key signaling events including the activation of caspase-3 may still occur. However, both passive, temperature-induced depression of apoptotic signaling as well as active suppression of apoptosis appear to work in synergy in these systems. In many instances cell death is prevented by simply avoiding the cellular triggers (e.g. leakage of proteins from the mitochondria or increases in intracellular calcium) that initiate apoptotic signaling. In this review we discuss what is known about programmed cell death in these under-studied models and highlight features of their physiology that likely support survival in the face of conditions that would induce cell death in typical vertebrate cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krumschnabel G, Podrabsky JE (2009) Fish as model systems for the study of vertebrate apoptosis. Apoptosis 14:1–21

    PubMed  Google Scholar 

  2. Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241

    PubMed  Google Scholar 

  3. Storey K (2004) Biochemical adaptation. In: Storey K (ed) Functional metabolism: regulation and adaptation. Wiley, Hobocken, pp 383–413

    Google Scholar 

  4. Shoubridge EA, Hochachka PW (1980) Ethanol: novel end product of vertebrate anaerobic metabolism. Science 209:308–309

    PubMed  Google Scholar 

  5. van Breukelen F, Martin SL (2002) Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J Appl Physiol 92:2640–2647

    PubMed  Google Scholar 

  6. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  Google Scholar 

  7. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    PubMed  Google Scholar 

  8. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    PubMed  Google Scholar 

  9. Ivanov KP (2000) Physiological blocking of the mechanisms of cold death: theoretical and experimental considerations. J Therm Biol 25:467–479

    PubMed  Google Scholar 

  10. Vassal T, Benoit-Gonin B, Carrat F, Guidet B, Maury E, Offenstadt G (2001) Severe accidental hypothermia treated in an ICU: prognosis and outcome. Chest 120:1998–2003

    PubMed  Google Scholar 

  11. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    PubMed  Google Scholar 

  12. van Breukelen F, Martin SL (2001) Translational initiation is uncoupled from elongation at 18 degrees C during mammalian hibernation. Am J Physiol Regul Integr Comp Physiol 281:R1374–R1379

    PubMed  Google Scholar 

  13. van Breukelen F, Pan P, Rausch CM, Utz JC, Velickovska V (2008) Homeostasis on hold: implications of imprecise coordination of protein metabolism during mammalian hibernation. In: Lovegrove B, McKechnie A (eds) Hypometabolism in animals: hibernation, Torpor and Cryobiology. University of KwaZulu-Natal, Pietermaritzburg, pp 163–170

    Google Scholar 

  14. Cossins A, Schwarzbaum P, Wieser W (1995) Effects of temperature on cellular ion regulation and membrane transport systems. In: Hochachka P, Mommsen T (eds) Biochemistry and molecular biology of fishes. Elsevier, Amsterdam, pp 101–126

    Google Scholar 

  15. Marjanovic M, Willis JS (1992) ATP dependence of Na(+)-K+ pump of cold-sensitive and cold-tolerant mammalian red blood cells. J Physiol 456:575–590

    PubMed  Google Scholar 

  16. Hall AC, Willis JS (1984) Differential effects of temperature on three components of passive permeability to potassium in rodent red cells. J Physiol 348:629–643

    PubMed  Google Scholar 

  17. Marjanovic M, Gregory C, Ghosh P, Willis JS, Dawson MJ (1993) A comparison of effect of temperature on phosphorus metabolites, pH and Mg2+ in human and ground squirrel red cells. J Physiol 470:559–574

    PubMed  Google Scholar 

  18. Marjanovic M, Willis JS (1995) Elevating intracellular free Mg2+ preserves sensitivity of Na(+)-K+ pump to ATP at reduced temperatures in guinea pig red blood cells. J Comp Physiol B 165:428–432

    PubMed  Google Scholar 

  19. MacDonald JA, Storey KB (1999) Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation. Biochem Biophys Res Commun 254:424–429

    PubMed  Google Scholar 

  20. Bennis C, Cheval L, Barlet-Bas C, Marsy S, Doucet A (1995) Effects of cold exposure and hibernation on renal Na, K-ATPase of the jerboa Jaculus orientalis. Pflugers Arch 430:471–476

    PubMed  Google Scholar 

  21. Charnock JS, Dryden WF, Lauzon PA (1980) Species difference in myocardial response to actodigin: correlation with inhibition of myocardial (Na+/K+)-ATPase. Comp Biochem Physiol C 66:153–158

    PubMed  Google Scholar 

  22. Charnock JS, Simonson LP (1978) Variations in (Na+/K+)-ATPase and Mg2+-ATPase activity of the ground squirrel brain during hibernation. Comp Biochem Physiol B 59:223–229

    PubMed  Google Scholar 

  23. Ellory JC, Willis JS (1982) Kinetics of the sodium pump in red cells of different temperature sensitivity. J Gen Physiol 79:1115–1130

    PubMed  Google Scholar 

  24. Repina SV, Repin NV (2008) Peculiarities of RBCs resistance to acid hemolysis in hibernating mammals. Bioelectrochemistry 73:106–109

    PubMed  Google Scholar 

  25. Rotermund A, Veltman J (1981) Modification of membrane-bound lipids in erythrocytes of cold-acclimated and hibernating 13-lined ground squirrels. Comp Biochem Physiol B 69:523–528

    Google Scholar 

  26. Kolomiytseva IK, Perepelkina NI, Zharikova AD, Popov VI (2008) Membrane lipids and morphology of brain cortex synaptosomes isolated from hibernating Yakutian ground squirrel. Comp Biochem Physiol B Biochem Mol Biol 151:386–391

    PubMed  Google Scholar 

  27. Bortner CD, Cidlowski JA (2007) Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 462:176–188

    PubMed  Google Scholar 

  28. Okada Y, Maeno E, Shimizu T, Manabe K, Mori S, Nabekura T (2004) Dual roles of plasmalemmal chloride channels in induction of cell death. Pflugers Arch 448:287–295

    PubMed  Google Scholar 

  29. Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203

    PubMed  Google Scholar 

  30. Hughes FM Jr, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 39:157–171

    PubMed  Google Scholar 

  31. Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, Foller M (2008) Eryptosis, a window to systemic disease. Cell Physiol Biochem 22:373–380

    PubMed  Google Scholar 

  32. Giorgi C, Romagnoli A, Pinton P, Rizzuto R (2008) Ca2 + signaling, mitochondria and cell death. Curr Mol Med 8:119–130

    PubMed  Google Scholar 

  33. Petersen OH, Michalak M, Verkhratsky A (2005) Calcium signalling: past, present and future. Cell Calcium 38:161–169

    PubMed  Google Scholar 

  34. Gentile NT, Spatz M, Brenner M, McCarron RM, Hallenbeck JM (1996) Decreased calcium accumulation in isolated nerve endings during hibernation in ground squirrels. Neurochem Res 21:947–954

    PubMed  Google Scholar 

  35. Liu B, Belke DD, Wang LC (1997) Ca2 + uptake by cardiac sarcoplasmic reticulum at low temperature in rat and ground squirrel. Am J Physiol 272:R1121–R1127

    PubMed  Google Scholar 

  36. Malysheva AN, Storey KB, Ziganshin RK, Lopina OD, Rubtsov AM (2001) Characteristics of sarcoplasmic reticulum membrane preparations isolated from skeletal muscles of active and hibernating ground squirrel Spermophilus undulatus. Biochemistry (Mosc) 66:918–925

    Google Scholar 

  37. Belke DD, Milner RE, Wang LC (1991) Seasonal variations in the rate and capacity of cardiac SR calcium accumulation in a hibernating species. Cryobiology 28:354–363

    PubMed  Google Scholar 

  38. Milner RE, Michalak M, Wang LC (1991) Altered properties of calsequestrin and the ryanodine receptor in the cardiac sarcoplasmic reticulum of hibernating mammals. Biochim Biophys Acta 1063:120–128

    PubMed  Google Scholar 

  39. Wang SQ, Lakatta EG, Cheng H, Zhou ZQ (2002) Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators. J Exp Biol 205:2957–2962

    PubMed  Google Scholar 

  40. Dobson GP (2004) Organ arrest, protection and preservation: natural hibernation to cardiac surgery. Comp Biochem Physiol B Biochem Mol Biol 139:469–485

    PubMed  Google Scholar 

  41. Malan A, Mioskowski E, Calgari C (1988) Time-course of blood acid-base state during arousal from hibernation in the European hamster. J Comp Physiol B 158:495–500

    PubMed  Google Scholar 

  42. Malan A, Rodeau JL, Daull F (1985) Intracellular pH in hibernation and respiratory acidosis in the European hamster. J Comp Physiol B 156:251–258

    PubMed  Google Scholar 

  43. Hand SC (1997) Oxygen, pHi and arrest of biosynthesis in brine shrimp embryos. Acta Physiol Scand 161:543–551

    PubMed  Google Scholar 

  44. Reipschlager A, Nilsson GE, Portner HO (1997) A role for adenosine in metabolic depression in the marine invertebrate Sipunculus nudus. Am J Physiol 272:R350–R356

    PubMed  Google Scholar 

  45. Igelmund P, Heinemann U (1995) Synaptic transmission and paired-pulse behaviour of CA1 pyramidal cells in hippocampal slices from a hibernator at low temperature: importance of ionic environment. Brain Res 689:9–20

    PubMed  Google Scholar 

  46. Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–961

    PubMed  Google Scholar 

  47. Liu D, Martino G, Thangaraju M et al (2000) Caspase-8-mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis. J Biol Chem 275:9244–9250

    PubMed  Google Scholar 

  48. Gendron MC, Schrantz N, Metivier D et al (2001) Oxidation of pyridine nucleotides during Fas- and ceramide-induced apoptosis in Jurkat cells: correlation with changes in mitochondria, glutathione depletion, intracellular acidification and caspase 3 activation. Biochem J 353:357–367

    PubMed  Google Scholar 

  49. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318–325

    PubMed  Google Scholar 

  50. Furlong IJ, Ascaso R, Lopez Rivas A, Collins MK (1997) Intracellular acidification induces apoptosis by stimulating ICE-like protease activity. J Cell Sci 110:653–661

    PubMed  Google Scholar 

  51. Park HJ, Lyons JC, Ohtsubo T, Song CW (1999) Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer 80:1892–1897

    PubMed  Google Scholar 

  52. Barry MA, Eastman A (1993) Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch Biochem Biophys 300:440–450

    PubMed  Google Scholar 

  53. Sawada M, Nakashima S, Kiyono T et al (2002) Acid sphingomyelinase activation requires caspase-8 but not p53 nor reactive oxygen species during Fas-induced apoptosis in human glioma cells. Exp Cell Res 273:157–168

    PubMed  Google Scholar 

  54. Antonsson B, Conti F, Ciavatta A et al (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    PubMed  Google Scholar 

  55. Tafani M, Cohn JA, Karpinich NO, Rothman RJ, Russo MA, Farber JL (2002) Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha. J Biol Chem 277:49569–49576

    PubMed  Google Scholar 

  56. Segal MS, Beem E (2001) Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol Cell Physiol 281:C1196–C1204

    PubMed  Google Scholar 

  57. Garcia-Calvo M, Peterson EP, Rasper DM et al (1999) Purification and catalytic properties of human caspase family members. Cell Death Differ 6:362–369

    PubMed  Google Scholar 

  58. Roy S, Bayly CI, Gareau Y, Houtzager VM, Kargman S, Keen SL, Rowland K, Seiden IM, Thornberry NA, Nicholson DW (2001) Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide. Proc Natl Acad Sci USA 98:6132–6137

    PubMed  Google Scholar 

  59. Chang YY, Juhasz G, Goraksha-Hicks P et al (2009) Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochem Soc Trans 37:232–236

    PubMed  Google Scholar 

  60. Adhihetty PJ, O’Leary MF, Chabi B, Wicks KL, Hood DA (2007) Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J Appl Physiol 102:1143–1151

    PubMed  Google Scholar 

  61. Marzetti E, Hwang JC, Lees HA et al. (2010) Mitochondrial death effectors: Relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta (in press)

  62. McGee-Lawrence ME, Wojda SJ, Barlow LN et al (2009) Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation). Bone 45:1186–1191

    PubMed  Google Scholar 

  63. Utz JC, Nelson S, O’Toole BJ, van Breukelen F (2009) Bone strength is maintained after 8 months of inactivity in hibernating golden-mantled ground squirrels, Spermophilus lateralis. J Exp Biol 212:2746–2752

    PubMed  Google Scholar 

  64. Wickler SJ, Hoyt DF, van Breukelen F, Rice-Warner CN (1993) Muscle function in hibernators. In: Carey C, Florant GL, Wunder BA, Horwitz B (eds) Life in the Cold III: ecological, physiological, and molecular mechanisms. Westview, Boulder, pp 389–398

  65. Lee K, So H, Gwag T et al (2010) Molecular mechanism underlying muscle mass retention in hibernating bats: role of periodic arousal. J Cell Physiol 222:313–319

    PubMed  Google Scholar 

  66. Malatesta M, Perdoni F, Battistelli S, Muller S, Zancanaro C (2009) The cell nuclei of skeletal muscle cells are transcriptionally active in hibernating edible dormice. BMC Cell Biol 10:19

    PubMed  Google Scholar 

  67. Rourke BC, Yokoyama Y, Milsom WK, Caiozzo VJ (2004) Myosin isoform expression and MAFbx mRNA levels in hibernating golden-mantled ground squirrels (Spermophilus lateralis). Physiol Biochem Zool 77:582–593

    PubMed  Google Scholar 

  68. Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25:469–497

    PubMed  Google Scholar 

  69. Elmes ME (1977) Apoptosis in the small intestine of zinc-deficient and fasted rats. J Pathol 123:219–223

    PubMed  Google Scholar 

  70. Pires J, Curi R, Otton R (2007) Induction of apoptosis in rat lymphocytes by starvation. Clin Sci (Lond) 112:59–67

    Google Scholar 

  71. Iwakiri R, Gotoh Y, Noda T et al (2001) Programmed cell death in rat intestine: effect of feeding and fasting. Scand J Gastroenterol 36:39–47

    PubMed  Google Scholar 

  72. Fujise T, Iwakiri R, Wu B et al (2006) Apoptotic pathway in the rat small intestinal mucosa is different between fasting and ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 291:G110–G116

    PubMed  Google Scholar 

  73. Gottlieb RA, Finley KD, Mentzer RM (2009) Cardioprotection requires taking out the trash. Basic Res Cardiol 104:169–180

    PubMed  Google Scholar 

  74. Rautou PE, Cazals-Hatem D, Moreau R, et al. (2008) Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagy. Gastroenterology 135:840–848, 848 e841–843

    Google Scholar 

  75. Wang L (1979) Time patterns and metabolic rates of natural torpor in the Richardson’s ground squirrel. Can J Zool 37:149–155

    Google Scholar 

  76. Kurtz CC, Carey HV (2007) Seasonal changes in the intestinal immune system of hibernating ground squirrels. Dev Comp Immunol 31:415–428

    PubMed  Google Scholar 

  77. Fleck CC, Carey HV (2005) Modulation of apoptotic pathways in intestinal mucosa during hibernation. Am J Physiol Regul Integr Comp Physiol 289:R586–R595

    PubMed  Google Scholar 

  78. van Breukelen F, Sonenberg N, Martin S (2004) Seasonal and state dependent changes of eIF4E and 4E-BP1 during mammalian hibernation: implications for the control of translation during torpor. Am J Physiol Regul Integr Comp Physiol 287:R349–R353

    PubMed  Google Scholar 

  79. van Breukelen F, Carey HV (2002) Ubiquitin conjugate dynamics in the gut and liver of hibernating ground squirrels. J Comp Physiol B 172:269–273

    PubMed  Google Scholar 

  80. Velickovska V, Lloyd BP, Qureshi S, van Breukelen F (2005) Proteolysis is depressed during hibernation at the level of the 20S core protease. J Comp Physiol B 175:329–335

    PubMed  Google Scholar 

  81. Velickovska V, van Breukelen F (2007) Ubiquitylation in livers of hibernating golden-mantled ground squirrels, Spermophilus lateralis. Cryobiology 55:230–235

    PubMed  Google Scholar 

  82. Lee YJ, Miyake S, Wakita H et al (2007) Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J Cereb Blood Flow Metab 27:950–962

    PubMed  Google Scholar 

  83. Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R, Dejean A (2006) The E3 SUMO Ligase PIASy Is a Regulator of Cellular Senescence and Apoptosis. Mol Cell 22:783–794

    PubMed  Google Scholar 

  84. Schweiger H, Lutjen-Drecoll E, Arnold E, Koch W, Nitsche R, Brand K (1988) Ischemia-induced alterations of mitochondrial structure and function in brain, liver, and heart muscle of young and senescent rats. Biochem Med Metab Biol 40:162–185

    PubMed  Google Scholar 

  85. Khachatur’ian ML, Gukasov VM, Komarov PG, Pirogova LB, Bilenko MV (1996) Indicators of lipid peroxidation paramters in the heart, liver, and brain of rats with different degrees of resistance to hypoxia. Bull Exp Biol Med 121:126–131

    Google Scholar 

  86. Norwood WI, Norwood CR (1982) Influence of hypothermia on intracellular pH during anoxia. Am J Physiol 243:C62–C65

    PubMed  Google Scholar 

  87. Nilsson GE, Lutz PL (2004) Anoxia tolerant brains. J Cereb Blood Flow Metab 24:475–486

    PubMed  Google Scholar 

  88. Drew KL, Rice ME, Kuhn TB, Smith MA (2001) Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radic Biol Med 31:563–573

    PubMed  Google Scholar 

  89. Lindell SL, Klahn SL, Piazza TM et al (2005) Natural resistance to liver cold ischemia-reperfusion injury associated with the hibernation phenotype. Am J Physiol Gastrointest Liver Physiol 288:G473–G480

    PubMed  Google Scholar 

  90. Christian SL, Ross AP, Zhao HW et al (2008) Arctic ground squirrel (Spermophilus parryii) hippocampal neurons tolerate prolonged oxygen-glucose deprivation and maintain baseline ERK1/2 and JNK activation despite drastic ATP loss. J Cereb Blood Flow Metab 28:1307–1319

    PubMed  Google Scholar 

  91. Walker R, Johansen P (1977) Anaerobic metabolism in goldfish, Carassius auratus. Can J Zool 55:304–311

    Google Scholar 

  92. Podrabsky JE, Lopez JP, Fan TW, Higashi R, Somero GN (2007) Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: insights from a metabolomics analysis. J Exp Biol 210:2253–2266

    PubMed  Google Scholar 

  93. Wise G, Mulvey JM, Renshaw GMC (1998) Hypoxia tolerance in the epaulette shark (Hemiscyllium ocellatum). J Exp Zool 281:1–5

    Google Scholar 

  94. Nilsson GE, Renshaw GM (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol 207:3131–3139

    PubMed  Google Scholar 

  95. Frerichs KU, Smith CB, Hallenbeck JM (1997) Tolerance of “ischemia” during hibernation is associated with suppression of cerebral protein synthesis in vivo and in vitro. J Cerebral Blood Flow Metab 17(Suppl 1):S448

    Google Scholar 

  96. Frerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM (1994) Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia”. J Cerebral Blood Flow Metab 14:193–205

    Google Scholar 

  97. Frerichs KU, Hallenbeck JM (1998) Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J Cerebral Blood Flow Metab 18:168–175

    Google Scholar 

  98. Frerichs KU (1999) Neuroprotective strategies in nature- novel clues for the treatment of stroke and trauma. Acta Neurochir 73:57–61

    Google Scholar 

  99. Kurtz CC, Lindell SL, Mangino MJ, Carey HV (2006) Hibernation confers resistance to intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 291:G895–G901

    PubMed  Google Scholar 

  100. Kesaraju S, Schmidt-Kastner R, Prentice HM, Milton SL (2009) Modulation of stress proteins and apoptotic regulators in the anoxia tolerant turtle brain. J Neurochem 109:1413–1426

    PubMed  Google Scholar 

  101. Levraut J, Iwase H, Shao ZH, Vanden Hoek TL, Schumacker PT (2003) Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. Am J Physiol Heart Circ Physiol 284:H549–H558

    PubMed  Google Scholar 

  102. Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27(Suppl 1):S2–S19

    PubMed  Google Scholar 

  103. Milsom WK, Zimmer MB, Harris MB (1999) Regulation of cardiac rhythm in hibernating mammals. Comp Biochem Physiol A 124:383–391

    Google Scholar 

  104. Milsom WK, Zimmer MB, Harris MB (2001) Vagal control of cardiorespiratory function in hibernation. Exper Physiol 86:791–796

    Google Scholar 

  105. Stecyk JA, Galli GL, Shiels HA, Farrell AP (2008) Cardiac survival in anoxia-tolerant vertebrates: An electrophysiological perspective. Comp Biochem Physiol C Toxicol Pharmacol 148:339–354

    PubMed  Google Scholar 

  106. English TE, Storey KB (2000) Enzymes of adenylate metabolism and their role in hibernation of the white-tailed prairie dog, Cynomys leucurus. Arch Biochem Biophys 376:91–100

    PubMed  Google Scholar 

  107. Zimny ML, Gregory R (1959) High-energy phosphates during long-term hibernation. Science 129:1363–1364

    PubMed  Google Scholar 

  108. Willmore WG, Storey KB (1997) Antioxidant systems and anoxia tolerance in a freshwater turtle Trachemys scripta elegans. Mol Cell Biochem 170:177–185

    PubMed  Google Scholar 

  109. Milton SL, Prentice HM (2007) Beyond anoxia: the physiology of metabolic downregulation and recovery in the anoxia-tolerant turtle. Comp Biochem Physiol A Mol Integr Physiol 147:277–290

    PubMed  Google Scholar 

  110. Baker PJ, Costanzo JP, Lee RE Jr (2007) Oxidative stress and antioxidant capacity of a terrestrially hibernating hatchling turtle. J Comp Physiol B 177:875–883

    PubMed  Google Scholar 

  111. Ma YL, Zhu X, Rivera PM et al (2005) Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 289:R1297–R1306

    PubMed  Google Scholar 

  112. Orr AL, Lohse LA, Drew KL, Hermes-Lima M (2009) Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel. Comp Biochem Physiol A Mol Integr Physiol 153:213–221

    PubMed  Google Scholar 

  113. Page MM, Peters CW, Staples JF, Stuart JA (2009) Intracellular antioxidant enzymes are not globally upregulated during hibernation in the major oxidative tissues of the 13-lined ground squirrel Spermophilus tridecemlineatus. Comp Biochem Physiol A Mol Integr Physiol 152:115

    PubMed  Google Scholar 

  114. Carey HV, Frank CL, Seifert JP (2000) Hibernation induces oxidative stress and activation of NK-kappaB in ground squirrel intestine. J Comp Physiol B 170:551–559

    PubMed  Google Scholar 

  115. Carey HV, Rhoads CA, Aw TY (2003) Hibernation induces glutathione redox imbalance in ground squirrel intestine. J Comp Physiol B 173:269–276

    PubMed  Google Scholar 

  116. Bullard RW, Funkhouser GE (1962) Estimated regional blood flow by rubidium 86 distribution during arousal from hibernation. Am J Physiol 203:266–270

    PubMed  Google Scholar 

  117. Rauch JC, Beatty DD (1975) Comparison of regional blood distribution in Eptesicus fuscus (big brown bat) during torpor (summer), hibernation (winter), and arousal. Can J Zool 53:207–214

    PubMed  Google Scholar 

  118. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327

    PubMed  Google Scholar 

  119. Vasconsuelo A, Milanesi L, Boland R (2009) Participation of HSP27 in the antiapoptotic action of 17beta-estradiol in skeletal muscle cells. Cell Stress Chaperones (in press)

  120. Nowak TS Jr, Ikeda J, Nakajima T (1990) 70-kDa heat shock protein and c-fos gene expression after transient ischemia. Stroke 21:107–111

    Google Scholar 

  121. Pringle AK, Thomas SJ, Signorelli F, Iannotti F (1999) Ischaemic pre-conditioning in organotypic hippocampal slice cultures is inversely correlated to the induction of the 72 kDa heat shock protein (HSP72). Brain Res 845:152–164

    PubMed  Google Scholar 

  122. Mamady H, Storey KB (2006) Up-regulation of the endoplasmic reticulum molecular chaperone GRP78 during hibernation in thirteen-lined ground squirrels. Mol Cell Biochem 292:89–98

    PubMed  Google Scholar 

  123. Eddy SF, McNally JD, Storey KB (2005) Up-regulation of a thioredoxin peroxidase-like protein, proliferation-associated gene, in hibernating bats. Arch Biochem Biophys 435:103–111

    PubMed  Google Scholar 

  124. Miyamoto S, Murphy AN, Brown JH (2009) Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. J Bioenerg Biomembr 41:169–180

    PubMed  Google Scholar 

  125. Abnous K, Dieni CA, Storey KB (2008) Regulation of Akt during hibernation in Richardson’s ground squirrels. Biochim Biophys Acta 1780:185–193

    PubMed  Google Scholar 

  126. Cai D, McCarron RM, Yu EZ, Li Y, Hallenbeck J (2004) Akt phosphorylation and kinase activity are down-regulated during hibernation in the 13-lined ground squirrel. Brain Res 1014:14–21

    PubMed  Google Scholar 

  127. Hoehn KL, Hudachek SF, Summers SA, Florant GL (2004) Seasonal, tissue-specific regulation of Akt/protein kinase B and glycogen synthase in hibernators. Am J Physiol Regul Integr Comp Physiol 286:R498–R504

    PubMed  Google Scholar 

  128. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    PubMed  Google Scholar 

  129. Morin P Jr, Dubuc A, Storey KB (2008) Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor. Biochim Biophys Acta 1779:628–633

    PubMed  Google Scholar 

  130. Yan J, Barnes BM, Kohl F, Marr TG (2008) Modulation of gene expression in hibernating arctic ground squirrels. Physiol Genomics 32:170–181

    PubMed  Google Scholar 

  131. Han Z, Hendrickson EA, Bremner TA, Wyche JH (1997) A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 272:13432–13436

    PubMed  Google Scholar 

Download references

Acknowledgments

All authors contributed equally to this work. The authors wish to thank the respective members of their laboratories for insight and suggestions. GK was supported by a grant from the Austrian Science Fund (FWF; Y212-B13 START). JEP was supported by grants from the National Science Foundation (IOB 0344578) and the American Heart Association (0335286N). FvB was supported by grants from the National Science Foundation (IOB 0448396) and the National Institutes of Health 2 P20 RR016464 from the INBRE Program of the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank van Breukelen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Breukelen, F., Krumschnabel, G. & Podrabsky, J.E. Vertebrate cell death in energy-limited conditions and how to avoid it: what we might learn from mammalian hibernators and other stress-tolerant vertebrates. Apoptosis 15, 386–399 (2010). https://doi.org/10.1007/s10495-010-0467-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0467-y

Keywords

Navigation