Skip to main content
Log in

Apoptotic-like regulation of programmed cell death in plants

  • Unusual Model Systems for Cell Death Research
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In plants, apoptotic-like programmed cell death (PCD) can be distinguished from other forms of plant cell death by protoplast condensation that results in a morphologically distinct cell corpse. In addition, there is a central regulatory role for the mitochondria and the degradation of the cell and its contents by PCD associated proteases. These distinguishing features are shared with animal apoptosis as it is probable that plant and animal cell death programmes arose in a shared unicellular ancestor. However, animal and plant cell death pathways are not completely conserved. The cell death programmes may have been further modified after the divergence of plant and animal lineages leading to converged, or indeed unique, features of their respective cell death programmes. In this review we will examine the features of apoptotic-like PCD in plants and examine the probable conserved components such as mitochondrial regulation through the release of apoptogenic proteins from the mitochondrial intermembrane space, the possible conserved or converged features such as “caspase-like” molecules which drive cellular destruction and the emerging unique features of plant PCD such as chloroplast involvement in cell death regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  PubMed  CAS  Google Scholar 

  2. Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59:435–444

    Article  PubMed  CAS  Google Scholar 

  3. McCabe PF, Levine A, Meijer PJ, Tapon NA, Pennell RI (1997) A programmed cell death pathway activated in carrot cells cultured at a low density. Plant J 12:267–280

    Article  CAS  Google Scholar 

  4. McCabe PF, Leaver CJ (2000) Programmed cell death in cell cultures. Plant Mol Biol 44:359–368

    Article  PubMed  CAS  Google Scholar 

  5. Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  PubMed  CAS  Google Scholar 

  6. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  7. Adrain C, Martin SJ (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 26:390–397

    Article  PubMed  CAS  Google Scholar 

  8. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  9. Diamond M, McCabe PF (2007) The mitochondrion and plant programmed cell death. In: Logan DC (ed) Plant mitochondria. Oxford, Blackwell, pp 308–329

    Chapter  Google Scholar 

  10. Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499

    Article  PubMed  CAS  Google Scholar 

  11. Lam E, del Pozo O (2000) Caspase-like protease involvement in the control of plant cell death. Plant Mol Biol 44:417–428

    Article  PubMed  CAS  Google Scholar 

  12. Woltering EJ, van der Bent A, Hoeberichts F (2002) Do plant caspases exist? Plant Physiol 130:1764–1769

    Article  PubMed  CAS  Google Scholar 

  13. Watanabe N, Lam E (2004) Recent advance in the study of caspase-like proteases and Bax inhibitor-1 in plants: their possible roles as regulators of programmed cell death. Mol Plant Pathol 5:65–70

    Article  CAS  Google Scholar 

  14. Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6:427–437

    Article  PubMed  CAS  Google Scholar 

  15. Burbridge E, Diamond M, Dix PJ, McCabe PF (2007) Use of cell morphology to evaluate the effect of a peroxidase gene on the cell death induction thresholds in tobacco. Plant Sci 172:853–860

    Article  CAS  Google Scholar 

  16. Balk J, Leaver CJ, McCabe PF (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463:151–154

    Article  PubMed  CAS  Google Scholar 

  17. Balk J, Chew SK, Leaver CJ, McCabe PF (2003) The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34:1–11

    Article  Google Scholar 

  18. Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death. Plant Physiol 141:208–219

    Article  PubMed  CAS  Google Scholar 

  19. Stein JC, Hansen G (1999) Mannose induces and endonuclease responsible for DNA laddering in plant cells. Plant Physiol 121:71–79

    Article  PubMed  CAS  Google Scholar 

  20. Sun Y-L, Zhao Y, Hong X, Zhai Z-H (1999) Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Lett 462:317–321

    Article  PubMed  CAS  Google Scholar 

  21. Krause M, Durner J (2004) Harpin inactivates mitochondria in Arabidopsis suspension cells. Mol Plant Microbe Interact 17:131–139

    Article  PubMed  CAS  Google Scholar 

  22. Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion: an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  PubMed  CAS  Google Scholar 

  23. Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    Article  PubMed  CAS  Google Scholar 

  24. Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  PubMed  CAS  Google Scholar 

  25. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  PubMed  CAS  Google Scholar 

  26. Lacomme C, Stanta Cruz S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA 96:7956–7961

    Article  PubMed  CAS  Google Scholar 

  27. Mitsuhara I, Malik KA, Miura M, Ohashi Y (1999) Animal cell-death suppressors Bcl-x(L) and Ced-9 inhibit cell death in tobacco plants. Curr Biol 15:775–778

    Article  Google Scholar 

  28. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  29. Jones A (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci 5:225–230

    Article  PubMed  CAS  Google Scholar 

  30. Curtis MJ, Wolpert TJ (2004) The victorin-induced mitochondrial permeability transition precedes cells shrinkage and biochemical markers of cell death, and shrinkage occurs without loss of membrane integrity. Plant J 38:244–259

    Article  PubMed  CAS  Google Scholar 

  31. Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49:1092–1111

    Article  PubMed  CAS  Google Scholar 

  32. Gao C, Xing D, Li L, Xhang L (2008) Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta 227:755–767

    Article  PubMed  CAS  Google Scholar 

  33. Garcia-Heredia JM, Hervás M, De la Rosa MA, Navarro JA (2008) Acetylsalicylic acid induced programmed cell death in Arabidopsis cell cultures. Planta 228:89–97

    Article  PubMed  CAS  Google Scholar 

  34. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  PubMed  CAS  Google Scholar 

  35. Arpagaus S, Rawyler A, Braendle R (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277:1780–1787

    Article  PubMed  CAS  Google Scholar 

  36. Yu XH, Perdue TD, Heimer YM, Jones AM (2002) Mitochondrial involvement in tracheary element programmed cell death. Cell Death Diff 9:189–198

    Article  CAS  Google Scholar 

  37. Saviani EE, Orsi CH, Oliveira JF, Pinto-Maglio CA, Salgado I (2002) Participation of the mitocondrial permeability transition pore in nitric oxide-induced plant cell death. FEBS Lett 510:136–140

    Article  PubMed  CAS  Google Scholar 

  38. Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed  CAS  Google Scholar 

  39. Kim M, Lim JH, Ahn J-H, Park K, Kim GT, Kim WT, Pai HS (2006) Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18:2341–2355

    Article  PubMed  CAS  Google Scholar 

  40. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206:2049–2057

    Article  PubMed  CAS  Google Scholar 

  41. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gotlob K, Chandel NS, Thompson CB, Brooks Robey R, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16:819–830

    Article  PubMed  CAS  Google Scholar 

  42. Galina A, Reis M, Albuquerque MC, Puyou AG, Puyou MT, de Meis L (1995) Different properties of the mitochondrial and cytosolic hexokinases in maize roots. Biochem J 309:105–112

    PubMed  CAS  Google Scholar 

  43. Camocho-Pereira J, Meyer LE, Machado LB, Oliveira MF, Galina A (2009) Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity. Plant Physiol 149:1099–1110

    Article  CAS  Google Scholar 

  44. Blackstone NW, Green DR (1999) The evolution of a mechanism of cell suicide. Bioessays 21:84–88

    Article  PubMed  CAS  Google Scholar 

  45. Maxwell DP, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29:269–279

    Article  PubMed  CAS  Google Scholar 

  46. Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  47. Blackstone NW, Kirkwood TBL (2003) Mitochondria and programmed cell death: “slave revolt” or community homeostasis? In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT, Cambridge, pp 309–325

    Google Scholar 

  48. Wang C, Youle RJ (2009) The role of the mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  PubMed  CAS  Google Scholar 

  49. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from the mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  50. Parish J, Li L, Klotz K, Ledwich D, Wang X, Xue D (2001) Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412:90–94

    Article  Google Scholar 

  51. David KK, Sasaki M, Yu SW, Dawson VL (2006) Endo G is dispensable for embryogenesis and apoptosis. Cell Death Differ 13:1147–1155

    Article  PubMed  CAS  Google Scholar 

  52. Irvine RA, Adachi N, Shibata DK, Cassell GD, Yu K, Karanjawala ZE, Hsieh CL, Lieber MR (2005) Generation and characterisation of endonuclease G null mice. Mol Cell Biol 25:294–302

    Article  PubMed  CAS  Google Scholar 

  53. Susin SA, Lorenzo HK, Samzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  54. Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    Article  PubMed  CAS  Google Scholar 

  55. Ball L, Accotto G-P, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  PubMed  CAS  Google Scholar 

  56. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  PubMed  CAS  Google Scholar 

  57. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  58. Lipton SA, Bossy-Wetzel E (2002) Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111:147–150

    Article  PubMed  CAS  Google Scholar 

  59. Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G (2009) AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci 1171:2–11

    Article  PubMed  CAS  Google Scholar 

  60. Yamada T, Ichimura K, Kanekatsu M, van Doorn WG (2009) Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. Plant Cell Physiol 50:610–625

    Article  PubMed  CAS  Google Scholar 

  61. Obara K, Sumi K, Fukuda H (2002) The use of multiple transcription starts causes the dual targeting of the Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts. Plant Cell Physiol 43:697–705

    Article  PubMed  CAS  Google Scholar 

  62. Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  PubMed  Google Scholar 

  63. Nishikawa F, Kato M, Hyodo H, Ikoma Y, Suglura M, Yano M (2003) Ascorbate metabolism in harvested broccoli. J Exp Bot 54:2439–2448

    Article  PubMed  CAS  Google Scholar 

  64. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  65. Doyle SM, Diamond M, McCabe PF (2010) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J Exp Bot 61:473–482

    Article  PubMed  CAS  Google Scholar 

  66. Genoud T, Buchala AJ, Chua N-H, Métraux J-P (2002) Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31:87–95

    Article  PubMed  CAS  Google Scholar 

  67. Zeier J, Pink B, Mueller MJ, Berger S (2004) Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta 219:673–683

    Article  PubMed  CAS  Google Scholar 

  68. Seo S, Okamoto M, Iwai T, Iwano M, Fukui K, Isogai A, Nakajima N, Ohashi Y (2000) Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12:917–932

    Article  PubMed  CAS  Google Scholar 

  69. Uren AG, O’Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    PubMed  CAS  Google Scholar 

  70. Sundström JE, Vaculova A, Smertenko AP et al (2009) Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat Cell Biol 11:1347–1354

    Article  PubMed  CAS  Google Scholar 

  71. Vercammen D, van de Cotte B, DeJaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe J, Van Beeumen J, Inzé D, Van Breusegen F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279:45329–45336

    Article  PubMed  CAS  Google Scholar 

  72. Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699

    Article  PubMed  CAS  Google Scholar 

  73. He R, Drury GE, Rotari VI, Gordon A, Wiler M, Farzanneh T, Woltering EF, Gallois P (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 283:774–783

    Article  PubMed  CAS  Google Scholar 

  74. Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14:R339–R340

    Article  PubMed  CAS  Google Scholar 

  75. Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA Jr, Rodrguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci 102:14463–14468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Theresa Reape is funded by a Science Foundation Ireland Basic Research Grant (EEEOBF328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa J. Reape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reape, T.J., McCabe, P.F. Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15, 249–256 (2010). https://doi.org/10.1007/s10495-009-0447-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0447-2

Keywords

Navigation