Skip to main content

Advertisement

Log in

Histone H1 subtype preferences of DFF40 and possible nuclear localization of DFF40/45 in normal and trichostatin A-treated NB4 leukemic cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A major hallmark of the terminal stages of apoptosis is the internucleosomal DNA fragmentation. The endonuclease responsible for this type of DNA degradation is the DNA fragmentation factor (DFF). DFF is a complex of the endonuclease DFF40 and its chaperone/inhibitor, DFF45. In vitro work has shown that histone H1 and HMGB1/2 recruit/target DFF40 to the internucleosomal linker regions of chromatin and that histone H1 directly interacts with DFF40 conferring DNA binding ability and enhancing its nuclease activity. The histone H1 family is comprised of many subtypes, which recent work has shown may have distinct roles in chromatin function. Thus we studied the binding association of DFF40 with specific H1 subtypes and whether these binding associations are altered after the induction of apoptosis in an in vivo cellular context. The apoptotic agent used in this study is the histone deacetylase inhibitor, trichostatin A (TSA). We separated the insoluble chromatin-enriched fraction from the soluble nuclear fraction of the NB4 leukemic cell line. Using MNase digestion, we provide evidence which strongly suggests that the heterodimer, DFF40-DFF45, is localized to the chromatin fraction under apoptotic as well as non-apoptotic conditions. Moreover, we present results that show that DFF40 interacts with the all H1 subtypes used in this study, but preferentially interacts with specific H1 subtypes after the induction of apoptosis by TSA. These results illustrate for the first time the association of DFF40 with individual H1 subtypes, under a specific apoptotic stimulus in an in vivo cellular context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang J, Xu M (2002) Apoptotic DNA fragmentation and tissue homeostasis. Trends Cell Biol 12:84–89

    Article  CAS  PubMed  Google Scholar 

  2. Oberhammer F, Bursch W, Tiefenbacher R, Froschl G, Pavelka M, Purchio T, Schulte-Hermann R (1993) Apoptosis is induced by transforming growth factor-b1 within 5 hours in regressing liver without significant fragmentation of the DNA. Hepatology 18:1238–1246

    Article  CAS  PubMed  Google Scholar 

  3. Schulze-Osthoff K, Walczak H, Droge W, Krammer PH (1994) Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol 127:15–20

    Article  CAS  PubMed  Google Scholar 

  4. Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401:168–173

    Article  CAS  PubMed  Google Scholar 

  5. Widlak P (2000) The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim Pol 47(4):1037–1044

    CAS  PubMed  Google Scholar 

  6. Widlak P, Garrard WT (2005) Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem 94:1078–1087

    Article  CAS  PubMed  Google Scholar 

  7. Nagata S, Nagase H, Kawane K, Mukae NH, Fukuyama NH (2003) Degradation of chromosomal DNA during apoptosis. Cell Death Differ 10:108–116

    Article  CAS  PubMed  Google Scholar 

  8. Hanus J, Kalinowska-Herok M, Widlak P (2008) The major apoptotic endonuclease DFF40/CAD is a deoxyribose-specific and double-strand-specific enzyme. Apoptosis 13(3):377–382

    Article  CAS  PubMed  Google Scholar 

  9. Widlak P, Peng Li P, Wang X, Garrard WT (2000) Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem 275:8226–8232

    Article  CAS  PubMed  Google Scholar 

  10. Widlak P, Garrard WT (2006) Unique features of the apoptotic endonuclease DFF40/CAD relative to micrococcal nuclease as a structural probe for chromatin. Biochem Cell Biol 84:405–410

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Li P, Widlak P, Zou H, Luo X, Garrard WT, Wang X (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 95:8461–8466

    Article  CAS  PubMed  Google Scholar 

  12. Neimanis S, Albig W, Doenecke D, Kahle J (2007) Sequence elements in both subunits of the DNA fragmentation factor are essential for its nuclear transport. J Biol Chem 282:35821–35830

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Zou H, Widlak P, Garrard W, Wang X (1999) Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. J Biol Chem 274:13836–13840

    Article  CAS  PubMed  Google Scholar 

  14. Wolf BB, Schuler M, Echeverri F, Green DR (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 274:30651–30656

    Article  CAS  PubMed  Google Scholar 

  15. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  CAS  PubMed  Google Scholar 

  16. Widlak P, Palyvoda O, Kumala S, Garrard WT (2002) Modeling apoptotic chromatin condensation in normal cell nuclei. Requirement for intranuclear mobility and actin involvement. J Biol Chem 277:21683–21690

    Article  CAS  PubMed  Google Scholar 

  17. Olins AL, Carlson RD, Wright EB, Olins DE (1976) Chromatin nu bodies: isolation, subfractionation and physical characterization. Nucleic Acids Res 3(12):3271–3291

    CAS  PubMed  Google Scholar 

  18. Allan J, Hartman PC, Crane-Robinson C, Aviles FX (1980) The structure of histone H1 and its location in chromatin. Nature 288:675–679

    Article  CAS  PubMed  Google Scholar 

  19. Pruss D, Bartholomew B, Persinger J, Hayes J, Arents G, Moudrianakis EN, Wolffe AP (1996) An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science 274:614–617

    Article  CAS  PubMed  Google Scholar 

  20. Crane-Robinson C (1997) Where is the globular domain of linker histone located on the nucleosome? Trends Biochem Sci 22:75–77

    Article  CAS  PubMed  Google Scholar 

  21. Carruthers LM, Bednar J, Woodcock CL, Hansen JC (1998) Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry 37:14776–14787

    Article  CAS  PubMed  Google Scholar 

  22. Carruthers LM, Hansen JC (2000) The core histone N termini function independently of linker histones during chromatin condensation. J Biol Chem 275(47):37285–37290

    Article  CAS  PubMed  Google Scholar 

  23. Bates DL, Butler PJ, Pearson EC, Thomas JO (1981) Stability of the higher-order structure of chicken-erythrocyte chromatin in solution. Eur J Biochem 119(3):469–476

    Article  CAS  PubMed  Google Scholar 

  24. Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427

    Article  CAS  PubMed  Google Scholar 

  25. Bednar J, Horowitz RA, Grigoryev SA et al (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci USA 95:14173–14178

    Article  CAS  PubMed  Google Scholar 

  26. Woodcock CL, Skoultchi AI, Yuhong Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14:17–25

    Article  CAS  PubMed  Google Scholar 

  27. Th’ng JP, Sung R, Ye M, Hendzel MJ (2005) H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain. J Biol Chem 280:27809–27814

    Article  PubMed  Google Scholar 

  28. Tsujj N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K (1976) A new antifungal antibiotic, trichostatin. J Antibiot (Tokyo) 29:1–6

    Google Scholar 

  29. Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174–17179

    CAS  PubMed  Google Scholar 

  30. Yoshida M, Matsuyama A, Komatsu Y, Nishino N (2003) From discovery to the coming generation of histone deacetylase inhibitors. Curr Med Chem 22:2351–2358

    Article  Google Scholar 

  31. Wysocka J, Reilly PT, Herr W (2001) Loss of HCF-1—chromatin association recedes temperature induced growth arrest of tsBN67 cells. Mol Cell Biol 21(11):3820–3829

    Article  CAS  PubMed  Google Scholar 

  32. Mendez J, Stillman B (2000) Chromatin association of human origin recognition complex cdc6 and minichromosome maintenance proteins during the cell cycle assembly of prereplication complexes in late mitosis. Mol Cell Biol 20:8602–8612

    Article  CAS  PubMed  Google Scholar 

  33. Covelo G, Sarandeses CS, Díaz-Jullien C, Freire M (2006) Prothymosin alpha interacts with free core histones in the nucleus of dividing cells. J Biochem 140(5):627–637

    Article  CAS  PubMed  Google Scholar 

  34. Eastman A (1995) Assays for DNA fragmentation, endonucleases, and intracellular pH and Ca2 associated with apoptosis. Methods Cell Biol 46:41–55

    Article  CAS  PubMed  Google Scholar 

  35. Widlak P, Lanuszewska J, Cary RB, Garrard WT (2003) Subunit structures and stoichiometries of human DNA fragmentation factor proteins before and after induction of apoptosis. J Biol Chem 278(29):26915–26922

    Article  CAS  PubMed  Google Scholar 

  36. Girardot V, Rabilloud T, Yoshida M, Beppu T, Lawrence JJ, Khochbin S (1994) Relationship between core histone acetylation and histone H1(0) gene activity. Eur J Biochem 224(3):885–892

    Article  CAS  PubMed  Google Scholar 

  37. Henderson C, Brancolini C (2003) Apoptotic pathways activated by histone deacetylase inhibitors: implications for the drug-resistant phenotype. Drug Resist Updat 6(5):247–256

    Article  CAS  PubMed  Google Scholar 

  38. Korn C, Scholz SR, Gimadutdinow O, Lurz R, Pingoud A, Meiss G (2005) Interaction of DNA fragmentation factor (DFF) with DNA reveals an unprecedented mechanism for nuclease inhibition and suggests that DFF can be activated in a DNA-bound state. J Biol Chem 280(7):6005–6015

    Article  CAS  PubMed  Google Scholar 

  39. Widlak P, Kalinowska M, Parseghian MS, Lu X, Hansen JC, Garrard WT (2005) The histone C-terminal domain binds to the apoptotic nuclease, DNA fragmentation factor (DFF40/CAD) and stimulates DNA cleavage. Biochemistry 44:7871–7878

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank our laboratory technician, Kalliope Kalokyri, for her laboratory work during the course of this investigation. This research project (PENED, No. 03ED322) was co-financed by the E.U. European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomae G. Sourlingas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ninios, Y.P., Sekeri-Pataryas, K.E. & Sourlingas, T.G. Histone H1 subtype preferences of DFF40 and possible nuclear localization of DFF40/45 in normal and trichostatin A-treated NB4 leukemic cells. Apoptosis 15, 128–138 (2010). https://doi.org/10.1007/s10495-009-0418-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0418-7

Keywords

Navigation