Skip to main content
Log in

Flt3 receptor inhibition reduces constitutive NFκB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

An Erratum to this article was published on 23 September 2015

Abstract

High-risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are characterized by the activation of the anti-apoptotic transcription factor NFκB, via the IKK complex. Here, we show that constitutive activation of the receptor tyrosine kinase Flt3 is responsible for IKK activation. Chemical inhibition or knockdown of Flt3 with small interfering RNAs reduced NFκB activation in MDS and AML cell lines, as well as in primary CD34+ bone marrow cells from patients, causing apoptosis. Epistatic analysis involving the simultaneous inhibition of Flt3 and IKK suggested that both kinases act in the same anti-apoptotic pathway. An IKK2 mutant with a constitutive kinase activity and a plasma membrane-tethered mutant of NEMO that activates IKK1/2 prevented the cytocidal action of Flt3 inhibition. Flt3 phosphorylates IKK2 in vitro, and Flt3 inhibition reduced the phosphorylation of IKK2 in MDS or AML cell lines. IKK2 and Flt3 physically associated in MDS and AML cells, and Flt3 inhibition disrupted this interaction. Flt3 inhibition only killed CD34+ bone marrow cells from high-risk MDS and AML patients, in correlation with blast numbers and NFκB activity, yet had no lethal effect on healthy CD34+ cells or cells from low-risk MDS. These results suggest that Flt3 inhibitors might exert an anti-neoplastic effect in high-risk MDS and AML through inhibition of NFκB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Flt3:

Fms-like tyrosine kinase-3

Flt3I:

Flt3 inhibitor

AML:

Acute myeloid leukemia

BMMNC:

Bone marrow mononuclear cells

NFκB:

Nuclear factor-κB

DAPI:

4′,6-diaminidino-2-phenylindole

DiOC6(3):

3,3′ dihexyloxacarbocyanine iodide

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IκB:

Inhibitor of NFκB

IKK:

IκB kinase

MDS:

Myelodysplastic syndrome

PI:

Propidium iodide

Z-VAD.fmk:

N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone

References

  1. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y et al (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97:2434–2439. doi:10.1182/blood.V97.8.2434

    Article  CAS  PubMed  Google Scholar 

  2. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S et al (1997) Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 11:1605–1609. doi:10.1038/sj.leu.2400812

    Article  CAS  PubMed  Google Scholar 

  3. Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M et al (2004) Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 103:1901–1908 Epub 2003 Nov 1906

    Article  CAS  PubMed  Google Scholar 

  4. Zheng R, Levis M, Piloto O, Brown P, Baldwin BR et al (2004) FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 103:267–274. Epub 2003 Sep 2011

    Article  CAS  PubMed  Google Scholar 

  5. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335. doi:10.1182/blood.V99.12.4326

    Article  CAS  PubMed  Google Scholar 

  6. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE et al (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98:1752–1759. doi:10.1182/blood.V98.6.1752

    Article  CAS  PubMed  Google Scholar 

  7. Abu-Duhier FM, Goodeve AC, Wilson GA, Gari MA, Peake IR et al (2000) FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 111:190–195. doi:10.1046/j.1365-2141.2000.02317.x

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi S, Harigae H, Kaku M, Sasaki T, Licht JD (2004) Flt3 mutation activates p21WAF1/CIP1 gene expression through the action of STAT5. Biochem Biophys Res Commun 316:85–92. doi:10.1016/j.bbrc.2004.02.018

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi S, McConnell MJ, Harigae H, Kaku M, Sasaki T et al (2004) The Flt3 internal tandem duplication mutant inhibits the function of transcriptional repressors by blocking interactions with SMRT. Blood 103:4650–4658. Epub 2004 Feb 4624

    Article  CAS  PubMed  Google Scholar 

  10. Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100:1532–1542. doi:10.1182/blood-2002-02-0492

    Article  CAS  PubMed  Google Scholar 

  11. Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y et al (1997) Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 11:1442–1446. doi:10.1038/sj.leu.2400770

    Article  CAS  PubMed  Google Scholar 

  12. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288. doi:10.1016/j.it.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  13. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26. doi:10.1038/nrd1279

    Article  CAS  PubMed  Google Scholar 

  14. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS et al (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98:2301–2307. doi:10.1182/blood.V98.8.2301

    Article  CAS  PubMed  Google Scholar 

  15. Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH et al (2004) Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 18:103–112. doi:10.1038/sj.leu.2403145

    Article  CAS  PubMed  Google Scholar 

  16. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    CAS  PubMed  Google Scholar 

  17. Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P et al (2006) NF-kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood 107:1156–1165. doi:10.1182/blood-2005-05-1989

    Article  CAS  PubMed  Google Scholar 

  18. Greten FR, Karin M (2004) The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 206:193–199. doi:10.1016/j.canlet.2003.08.029

    Article  CAS  PubMed  Google Scholar 

  19. Griessinger E, Imbert V, Lagadec P, Gonthier N, Dubreuil P et al (2007) AS602868, a dual inhibitor of IKK2 and FLT3 to target AML cells. Leukemia 21:877–885

    CAS  PubMed  Google Scholar 

  20. Takahashi S, Harigae H, Ishii KK, Inomata M, Fujiwara T et al (2005) Over-expression of Flt3 induces NF-kappaB pathway and increases the expression of IL-6. Leuk Res 29:893–899. doi:10.1016/j.leukres.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  21. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR et al (2002) A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 99:3885–3891. doi:10.1182/blood.V99.11.3885

    Article  CAS  PubMed  Google Scholar 

  22. Kelly LM, Yu JC, Boulton CL, Apatira M, Li J et al (2002) CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 1:421–432. doi:10.1016/S1535-6108(02)00070-3

    Article  CAS  PubMed  Google Scholar 

  23. Grundler R, Thiede C, Miething C, Steudel C, Peschel C et al (2003) Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood 102:646–651. Epub 2003 Mar 2027

    Article  CAS  PubMed  Google Scholar 

  24. Smith BD, Levis M, Beran M, Giles F, Kantarjian H et al (2004) Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103:3669–3676 Epub 2004 Jan 3615

    Article  CAS  PubMed  Google Scholar 

  25. Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3:650–665. doi:10.1038/nrc1169

    Article  CAS  PubMed  Google Scholar 

  26. Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P et al (2003) A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 102:2763–2767 Epub 2003 Jul 2763

    Article  CAS  PubMed  Google Scholar 

  27. Walters DK, Stoffregen EP, Heinrich MC, Deininger MW, Druker BJ (2005) RNAi-induced down-regulation of FLT3 expression in AML cell lines increases sensitivity to MLN518. Blood 105:2952–2954. Epub 2004 Dec 2957

    Article  CAS  PubMed  Google Scholar 

  28. Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100:2292–2302. doi:10.1182/blood-2002-04-1199

    Article  CAS  PubMed  Google Scholar 

  29. Hassan Z, Fadeel B, Zhivotovsky B, Hellstrom-Lindberg E (1999) Two pathways of apoptosis induced with all-trans retinoic and etoposide in the myeloid cell line P39. Exp Hematol 27(8):1322–1329

    Article  CAS  PubMed  Google Scholar 

  30. Fabre C, Carvalho G, Tasdemir E, Braun T, Ades L et al (2007) NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26:4071–4083. doi:10.1038/sj.onc.1210187

    Article  CAS  PubMed  Google Scholar 

  31. Castedo M, Perfettini JL, Kroemer G (2002) Mitochondrial apoptosis and the peripheral benzodiazepine receptor: a novel target for viral and pharmacological manipulation. J Exp Med 196:1121–1125. doi:10.1084/jem.20021758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zamzami N, Kroemer G (2004) Methods to measure membrane potential and permeability transition in the mitochondria during apoptosis. Methods Mol Biol 282:103–115

    CAS  PubMed  Google Scholar 

  33. Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P et al (1996) Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 157:512–521

    CAS  PubMed  Google Scholar 

  34. Metivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA et al (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61:157–163. doi:10.1016/S0165-2478(98)00013-3

    Article  CAS  PubMed  Google Scholar 

  35. Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C et al (1997) Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia 11:1469–1477. doi:10.1038/sj.leu.2400768

    Article  CAS  PubMed  Google Scholar 

  36. Patch RJ, Baumann CA, Liu J, Gibbs AC, Ott H et al (2006) Identification of 2-acylaminothiophene-3-carboxamides as potent inhibitors of FLT3. Bioorg Med Chem Lett 16:3282–3286. doi:10.1016/j.bmcl.2006.03.032

    Article  CAS  PubMed  Google Scholar 

  37. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL et al (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866. doi:10.1126/science.278.5339.860

    Article  CAS  PubMed  Google Scholar 

  38. Weil R, Schwamborn K, Alcover A, Bessia C, Di Bartolo V et al (2003) Induction of the NF-kappaB cascade by recruitment of the scaffold molecule NEMO to the T cell receptor. Immunity 18:13–26. doi:10.1016/S1074-7613(02)00506-X

    Article  CAS  PubMed  Google Scholar 

  39. Boudard D, Sordet O, Vasselon C, Revol V, Bertheas MF et al (2000) Expression and activity of caspases 1 and 3 in myelodysplastic syndromes. Leukemia 14:2045–2051. doi:10.1038/sj.leu.2401959

    Article  CAS  PubMed  Google Scholar 

  40. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S et al (2000) The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 96:3932–3938

    CAS  PubMed  Google Scholar 

  41. Parker JE, Mufti GJ (1998) Ineffective haemopoiesis and apoptosis in myelodysplastic syndromes. Br J Haematol 101:220–230. doi:10.1046/j.1365-2141.1998.00708.x

    Article  CAS  PubMed  Google Scholar 

  42. Tehranchi R, Fadeel B, Forsblom AM, Christensson B, Samuelsson J et al (2003) Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 101:1080–1086. doi:10.1182/blood-2002-06-1774

    Article  CAS  PubMed  Google Scholar 

  43. Quentmeier H, Reinhardt J, Zaborski M, Drexler HG (2003) FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 17:120–124. doi:10.1038/sj.leu.2402740

    Article  CAS  PubMed  Google Scholar 

  44. Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M et al (2005) Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 106:2484–2490. doi:10.1182/blood-2004-09-3667

    Article  CAS  PubMed  Google Scholar 

  45. Lavon I, Goldberg I, Amit S, Landsman L, Jung S et al (2000) High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-kappaB activation. Nat Med 6:573–577. doi:10.1038/75057

    Article  CAS  PubMed  Google Scholar 

  46. Fernandez Y, Verhaegen M, Miller TP, Rush JL, Steiner P et al (2005) Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res 65:6294–6304. doi:10.1158/0008-5472.CAN-05-0686

    Article  CAS  PubMed  Google Scholar 

  47. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497

    CAS  PubMed  Google Scholar 

  48. Lee BD, Sevcikova S, Kogan SC (2006) Dual treatment with FLT3 inhibitor SU11657 and doxorubicin increases survival of leukemic mice. Leuk Res 31(8):1131–1134

    Article  PubMed Central  PubMed  Google Scholar 

  49. O’Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG et al (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101:3597–3605. doi:10.1182/blood-2002-07-2307

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Jalil Abdelali (Institut Gustave Roussy, Villejuif, France) for support in confocal microscopy. Guido Kroemer is supported by Agence Nationale de Recherche, Fondation de France, Cent pour Sang la Vie, Cancéropôle Ile-de-France, Institut National du Cancer, Ligue Nationale contre le Cancer, and European Community (Active p53, Apo-Sys, TransDeath, RIGHT, ChemoRes, ApopTrain). Jennifer Grosjean received a post-doctoral fellowship by Cancéropôle Ile-de-France. Lionel Ades receives a scholarship from Assistance Publique-Hopitaux de Paris and Caisse Nationale d’Assurance Maladie des Professions Indépendantes. M.T. receives a Ph.D. fellowship from Université Paris Sud, Paris 11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer.

Additional information

Author contributions: J.G-R. performed the experiments and analyzed the data. L.A., S.B., C.F., T.B. and S.d.B. provided bone marrow samples and essential clinical information on patients. A.I and P.F. participated in the conception of the study. G.K. conceived and directed the study. J.G-R and G.K. wrote the paper.

Electronic supplementary material

10495_2008_243_MOESM1_ESM.pdf

Effects of Flt3 ligation and inhibition on apoptosis and NFκB activation of KG1 cells. KG1 cells were cultured overnight in the absence or presence of Flt3I (2 µM) and/or Flt3L (10 µM) and the frequency of apoptotic events was estimated by determining the number of ΔΨ lowm (DiOC6(3)low) cells. In addition, the IκBα degradation was assessed by immunoblot (B) and the nuclear localization of NFκB was determined by EMSA (C) or immunofluorescence detection of p65 (D). (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosjean-Raillard, J., Adès, L., Boehrer, S. et al. Flt3 receptor inhibition reduces constitutive NFκB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Apoptosis 13, 1148–1161 (2008). https://doi.org/10.1007/s10495-008-0243-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0243-4

Keywords

Navigation