Skip to main content
Log in

Production of fructanase by a wild strain of Saccharomyces cerevisiae on tequila agave fructan

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A new wild strain of Saccharomyces cerevisiae (CF3) isolated from tequila must was evaluated for production of fructanase on Agave tequilana Weber fructan (FT). Fructanase activity (F) was assessed by a 33 factorial design (substrate, temperature and pH). High enzymatic activity (31.1 U/ml) was found at 30 °C, pH 5, using FT (10 g/l) as substrate. The effect of initial substrate concentration on F (FT0, 5.7–66 g/l) was studied and it was found that F was highest (44.8 U/ml) at FT0 25 g/l. A 22 factorial experimental design with five central points was utilized to study the effect of stirring and aeration on fructanase activity; stirring exhibited a stronger effect on F. The ratio fructanase to invertase (F/S) was 0.57, which confirms that the enzymes are fructanase. Crude fructanase reached high substrate hydrolysis (48 wt%) in 10 h. It is shown that S. cerevisiae CF3 was able to produce large amounts of fructanase by growing it on fructan from A. tequilana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrizon J, Morel S, Gschaedler A, Monsan P (2011) Purification and substrate specificities of a fructanase from Kluyveromyces marxianus isolated from the fermentation process of Mezcal. Bioresour Technol 102:3298–3303

    Article  CAS  PubMed  Google Scholar 

  • Cazetta ML, Monti R, Contiero J (2010) Effects of culture conditions on the production of inulinase by Kluyveromyces marxianus. Braz Arch Biol Technol 53:701–707

    Article  CAS  Google Scholar 

  • Chi Z, Chi Z, Zhang T, Liu G, Yue L (2009) Inulinase-expressing microorganisms and applications of inulinases. Appl Microbiol Biotechnol 82:211–220

    Article  CAS  PubMed  Google Scholar 

  • Dilipkumar M, Rajasimman M, Rajamohan N (2011) Application of statistical design for the production of inulinase by Streptomyces sp. using pressmud. Front Chem Sci Eng 5:463–470

    Article  CAS  Google Scholar 

  • Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeast by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49:329–337

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Chen L, Yuan W (2012) Effects of carbon sources, oxygenation and ethanol on the production of inulinase by Kluyveromyces marxianus YX01. J BioSci Biotech 1(2):155–161

    Google Scholar 

  • García-Aguirre M, Sáenz-Álvaro V, Rodríguez-Soto M, Vicente-Magueyal F, Botello-Álvarez E, Jiménez-Islas H, Cárdenas-Manríquez M, Rico-Martínez R, Navarrete-Bolaños J (2009) Strategy for biotechnological process design applied to the enzymatic hydrolysis of Agave fructo-oligosaccharides to obtain fructose-rich syrups. J Agric Food Chem 57:10205–10210

    Article  PubMed  Google Scholar 

  • Guo N, Gong F, Chi ZM, Sheng J, Li J (2009) Enhanced inulinase production in solid state fermentation by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. J Ind Microbiol Biotechnol 36:499–507

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Rathore P, Kaur N, Singh R (1990) Production, thermal stability and immobilization of inulinase from Fusarium oxysporum. J Chem Tech Biotechnol 47:245–257

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • López M, Mancilla-Margalli N, Mendoza-Díaz G (2003) Molecular structures of fructans from Agave tequilana Weber. var. azul. J Agric Food Chem 51:7835–7840

    Article  PubMed  Google Scholar 

  • Onilude A, Fadaunsi I, Garuba EO (2012) Inulinase production by Saccharomyces sp. in solid state fermentation using wheat bran as substrate. Ann Microbiol 62:843–848

    Article  CAS  Google Scholar 

  • Ricca E, Calabro V, Curcio S, Lorio G (2007) The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit Rev Biotechnol 27:129–145

    Article  CAS  PubMed  Google Scholar 

  • Rouwenhorst RJ, Ritmeester WS, Scheeffers WA, Van Dijken JP (1990) Localization of inulinase and invertase in Kluyveromyces species. Appl Environ Microbiol 56:3329–3336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santiago-Urbina J, Arias-García A, Ruiz-Teran F (2014) Yeast species associated with spontaneous fermentation of taberna, a traditional palm wine from the southeast of Mexico. Ann Microbiol. doi:10.1007/s13213-014-0861-8

    Google Scholar 

  • Silva-Filho EA, Dos Santos SK, Resende AM, De Morais JO, De Morais MA, Simoes DA (2005) Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting. Antonie Van Leeuwenhoek 88:13–23

    Article  PubMed  Google Scholar 

  • Singh P, Gill PK (2006) Production of Inulinases. Food Technol Biotechnol 44:151–162

    CAS  Google Scholar 

  • Singh RS, Dhaliwal R, Puri M (2007) Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Bioresour Technol 98:2518–2525

    Article  CAS  PubMed  Google Scholar 

  • Starbird R, Zuñiga V, Delgado E, Saake B, Toriz G (2007) Design of microspheres for drug delivery to the colon from blue agave fructans. Part I: esterification of agave fructans. J Biobased Mater Bioenerg 1:238–244

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toriz G, Delgado E, Zúñiga V (2007) A proposed chemical structure for fructans from blue agave plant (Tequilana Weber var. azul). E-Gnosis, Revista Electrónica de la Universidad de Guadalajara 5:1–5

    Google Scholar 

  • Treichel H, Mazutti MA, Filho FM, Rodrigues MI (2009) Technical viability of the production, partial purification and characterization of inulinase using pretreated agroindustrial residues. Bioprocess Biosyst Eng 39:425–433

    Article  Google Scholar 

  • Vandamme E, Derycke D (1983) Microbial Inulinases: fermentation Process, Properties and Applications. Adv Appl Microbiol 29:139–176

    Article  CAS  PubMed  Google Scholar 

  • Vemuri G, Eiteman M, Mcewen J, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. PNAS 104:2402–2407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vijayaraghavan K, Yamini D, Ambika V, Sowdamin S (2009) Trends in inulinase production—a review. Crit Rev Biotechnol 29:67–77

    Article  CAS  PubMed  Google Scholar 

  • Vranesik D, Kurtanjek E, Santos AMP, Maugeri F (2002) Inulinase Production by Kluyveromyces bulgaricus. Food Technol Biotechnol 40:67–73

    Google Scholar 

  • Waleckx E, Gschaedler A, Colonna-Ceccaldi B, Monsan P (2008) Hydrolysis of fructans from Agave tequilana Weber var. azul Weber var. azul during the cooking step in a traditional tequila elaboration process. Food Chem 1008:40–48

    Article  Google Scholar 

  • White TJ, Bruns JT, Lee E, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide of methods and applications. Academic Press, San Diego, CA, pp 315–322

    Chapter  Google Scholar 

  • Zuñiga V, Martínez-Gómez AJ, Camacho-López A (1998) US Patent 5486333, 1998

Download references

Acknowledgments

This work was supported by the Consejo Estatal de Ciencia y Tecnología de Jalisco, México (Project No. PS-2009-765). G. Jacques acknowledges financial support from CONACyT through scholarship No. 234574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pelayo-Ortiz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corona-González, R.I., Pelayo-Ortiz, C., Jacques, G. et al. Production of fructanase by a wild strain of Saccharomyces cerevisiae on tequila agave fructan. Antonie van Leeuwenhoek 107, 251–261 (2015). https://doi.org/10.1007/s10482-014-0323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0323-0

Keywords

Navigation