Skip to main content
Log in

Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The effect of feeding Lactobacillus fermentum I5007 on the immune system of weaned pigs with or without E. coli challenge was determined. Twenty-four weaned barrows (6.07 ± 0.63 kg BW) were randomly assigned to one of four treatments (N = 6) in a factorial design experiment. The first two treatments consisted of healthy piglets with half of the pigs receiving no treatment while the other half was orally administered with L. fermentum I5007 (108 CFU/ml) at a daily dose of 20 ml. Pigs in the second two treatments were challenged on the first day with 20 ml of E. coli K88ac (108 CFU/ml). Half of these pigs were not treated while the remaining pigs were treated with 20 ml of L. fermentum I5007 (108 CFU/ml). Peripheral blood lymphocytes subsets were determined using flow cytometry. The intestinal mucosal immunity of the pigs was monitored by real time polymerase chain reaction. The cytokine content of the pig’s serum was also analyzed. Oral administration of L. fermentum I5007 increased blood CD4+ lymphocyte subset percentage as well as tumor necrosis factor-α and interferon-γ expression in the ileum. Pigs challenged with E. coli had elevated jejunal tumor necrosis factor-α while interferon-γ expression was increased throughout the small intestine. There was no difference in the concentration of the cytokines interleukin-2, interleukin-6, tumor necrosis factor-α and interferon-γ in the serum. CD8+ and CD4+/CD8+ in peripheral blood were not affected by treatment. In conclusion, L. fermentum I5007 can enhance T cell differentiation and induce ileum cytokine expression suggesting that this probiotic strain could modulate immune function in piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH, Pober JS (2000) Cytokines. In: Schmit W, Hacker HA, Ehlers J (eds) Cellular and molecular immunology, 4th edn. WB Saunders, Philadelphia, pp 235–269

    Google Scholar 

  • Amrouche T, Boutin Y, Prioult G, Fliss I (2006) Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production. Int Dairy J 16:70–80. doi:10.1016/j.idairyj.2005.01.008

    Article  CAS  Google Scholar 

  • Angelis MD, Siragusa S, Berloco M, Caputo L, Settanni L, Alfonsi G, Amerio M, Grandi A, Ragni A, Gobbetti M (2006) Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res Microbiol 157:792–801. doi:10.1016/j.resmic.2006.05.003

    Article  PubMed  Google Scholar 

  • Baken KA, Ezendam J, Gremmer ER, Klerk A, Pennings JLA, Matthee B, Peijnenburg AACM, Loveren H (2006) Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int J Food Microbiol 112:8–18. doi:10.1016/j.ijfoodmicro.2006.06.009

    Article  PubMed  CAS  Google Scholar 

  • Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4:430–435. doi:10.1016/0966-842X(96)10057-3

    Article  PubMed  CAS  Google Scholar 

  • Campos-Perez JJ, Ward M, Grabowski PS, Ellis AE, Secombes CJ (2000) The gills are an important site of iNOS expression in rainbow trout Oncorhynchus mykiss after challenge with the gram positive pathogen Renibacterium salmoninarum. Immunology 99:153–161. doi:10.1046/j.1365-2567.2000.00914.x

    Article  PubMed  CAS  Google Scholar 

  • Carter LL, Dutton RW (1996) Type 1 and Type 2: a fundamental dichotomy for all T-cell subsets. Curr Opin Immunol 8:336–342. doi:10.1016/S0952-7915(96)80122-1

    Article  PubMed  CAS  Google Scholar 

  • Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69(Suppl):1046–1051

    Google Scholar 

  • Chapat L, Chemin K, Dubois B, Bourdet-Sicard R, Kaiserlian D (2004) Lactobacillus casei reduces CD8+ T cell-mediated skin inflammation. Eur J Immunol 34:2520–2528. doi:10.1002/eji.200425139

    Article  PubMed  CAS  Google Scholar 

  • de Moreno de LeBlanc A, Valdéz J, Perdigón G (2004) Regulatory effect of yoghurt on intestinal inflammatory immune response. Eur J Inflamm 2:21–61

    CAS  Google Scholar 

  • de Moreno de LeBlanc A, Chaves S, Carmuega E, Weill R, Antóine J, Perdigón Gabriela (2008) Effect of long-term continuous consumption of fermented milk containing probiotic bacteria on mucosal immunity and the activity of peritoneal macrophages. Immunobiology 213:97–108. doi:10.1016/j.imbio.2007.07.002

    Article  PubMed  CAS  Google Scholar 

  • de Vrese M, Schrezenmeir J (2002) Probiotics and non-intestinal infectious conditions. Br J Nutr 88(Suppl 1):S59–S66. doi:10.1079/BJN2002630

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Ropero MP, Martín R, Sierra S, Lara-Villoslada F, Rodríguez JM, Xaus J, Olivares M (2007) Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J Appl Microl 102:337–343

    Google Scholar 

  • Drouault-Holowacz S, Foligné B, Dennin V, Goudercourt D, Terpend K, Burckel A, Pot B (2006) Anti-inflammatory potential of the probiotic dietary supplement Lactibiane Tolérance: in vitro and in vivo considerations. Clin Nutr 25:994–1003. doi:10.1016/j.clnu.2006.03.006

    Article  PubMed  CAS  Google Scholar 

  • Gill HS, Rutherfurd KJ, Prasad J, Gopal PK (2000) Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr 83:167–176

    Article  PubMed  CAS  Google Scholar 

  • Grayson TH, Cooper LF, Wrathmell AB, Roper J, Evenden JRAJ, Gilpin ML (2002) Host response to Renibacterium salmoninarum and specific components of the pathogen reveal the mechanisms of immune suppression and activation. Immunology 106:273–283. doi:10.1046/j.1365-2567.2002.01420.x

    Article  PubMed  CAS  Google Scholar 

  • Haller D, Blum S, Bode C, Hammes WP, Schiffrin EJ (2000) Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect Immun 68:752–759. doi:10.1128/IAI.68.2.752-759.2000

    Article  PubMed  CAS  Google Scholar 

  • Huang CH, Qiao SY, Li DF, Piao XS, Ren JP (2004) Effects of Lactobacillus on the performance, diarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs. Asian-Aust J Anim Sci 17:401–409

    Google Scholar 

  • Igarashi I, Suzuki R, Waki S, Tagawa Y-I, Seng S, Tum S, Omata Y, Saito A, Nagasawa H, Iwakura Y, Suzeki N, Mikami T, Tyoda Y (1999) Roles of CD4+ T cells and gamma interferon in protective immunity against Babesia microti infection in mice. Infect Immun 67:4143–4148

    PubMed  CAS  Google Scholar 

  • Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8:223–246

    PubMed  Google Scholar 

  • Lai CH, Yin JD, Li DF, Zhao LD, Qiao SY, Xing JJ (2005) Conjugated linoleic acid attenuates the production and gene expression of pro-inflammatory cytokines in weaned pigs challenged with lipopolysaccharide. J Nutr 135:239–244

    CAS  Google Scholar 

  • Li XJ, Yue LY, Guan XF, Qiao SY (2008) The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microbiol 104:1082–1091. doi:10.1111/j.1365-2672.2007.03636.x

    Article  PubMed  CAS  Google Scholar 

  • Lindenstrom T, Secombes CJ, Buchmann K (2004) Expression of immune response genes in rainbow trout skin induced by Gyrodactylus derjavini infections. Vet Immunol Immunopathol 97:137–148. doi:10.1016/j.vetimm.2003.08.016

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Walker WA (2001) Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr 73(Suppl):1124s–1130s

    PubMed  CAS  Google Scholar 

  • Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69(Suppl):1035s–1045s

    PubMed  CAS  Google Scholar 

  • Maldonado Galdeano C, Perdigón G (2006) The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13:219–226. doi:10.1128/CVI.13.2.219-226.2006

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki T, Yamazaki R, Hashimoto S, Yokokura T (1998) The effect of oral feeding of Lactobacillus casei strain Shirota on immunoglobulin E production in mice. J Dairy Sci 81:48–53

    Article  PubMed  CAS  Google Scholar 

  • McCracken VJ, Lorenz RG (2001) The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol 3:1–11. doi:10.1046/j.1462-5822.2001.00090.x

    Article  PubMed  CAS  Google Scholar 

  • McGhee JR, Kiyono H, Michalek SM, Mestecky J (1987) Enteric immunization reveals a T cell network for IgA responses and suggests that humans possess a common mucosal immune system. Antonie Van Leeuwenhoek 53:537–543. doi:10.1007/BF00415514

    Article  PubMed  CAS  Google Scholar 

  • Miettinen M, Matikainen S, Jaana V-V, Jaana P, Varkila K, Kurimoto M, Julkumen I (1998) Lactobacillus and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells. Infect Immun 66:6058–6062

    PubMed  CAS  Google Scholar 

  • Nagy B, Fekete PZ (1999) Enterotoxigenic Escherichia coli (ETEC) in animals. Vet Res 30:259–284

    PubMed  CAS  Google Scholar 

  • Nava GM, Bielke LR, Callaway TR, Castaneda MP (2005) Probiotic alternatives to reduce gastrointestinal infection: The poultry experience. Anim Health Res Rev 6:105–118. doi:10.1079/AHR2005103

    Article  PubMed  CAS  Google Scholar 

  • Nollet H, Deprez P, Van Driessche E, Muylle E (1999) Protection of just weaned pigs against infection with F18t Escherichia coli by non-immune plasma powder. Vet Microbiol 65:37–45. doi:10.1016/S0378-1135(98)00282-X

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Huffnagle GB (2004) Does the microbiota regulate immune responses outside the gut? Trends Microbiol 12:562–568. doi:10.1016/j.tim.2004.10.008

    Article  PubMed  CAS  Google Scholar 

  • Otte JM, Podolsky DK (2004) Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286:G613–G626. doi:10.1152/ajpgi.00341.2003

    Article  PubMed  CAS  Google Scholar 

  • Paturi G, Phillips M, Jones M, Kailasapathy K (2007) Immune enhancing effects of Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 in mice. Int J Food Microbiol 115:115–118. doi:10.1016/j.ijfoodmicro.2006.10.007

    Article  PubMed  CAS  Google Scholar 

  • Perdigon G, Maldonado Galdeano C, Valdez JC, Medici M (2002) Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 56(Suppl 4):S21–S26. doi:10.1038/sj.ejcn.1601658

    Article  PubMed  CAS  Google Scholar 

  • Schiffrin EJ, Brassart D, Servin AL, Rochat F, Donnet-Hughes A (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr 66:515–520

    Google Scholar 

  • Spiekermann GM, Walker WA (2001) Oral tolerance and its role in clinical disease. J Pediatr Gastroenterol Nutr 32:237–255. doi:10.1097/00005176-200103000-00003

    Article  PubMed  CAS  Google Scholar 

  • Stadlbauer V, Krisper P, Aigner R, Haditsch B, Jung A, Lackner C (2006) Effect of extracorporeal liver support by MARS and Prometheus on serum cytokines in acute-on-chronic liver failure. Crit Care 10:R169. doi:10.1186/cc5119

    Article  PubMed  Google Scholar 

  • Van Dijk AJ, Enthoven PMM, Van den Hoven SGC, Van Laarhoven MMMH, Niewold TA, Nabuurs MJA, Beynen AC (2002) The effect of dietary spray-dried porcine plasma on clinical response in weaned piglets challenged with a pathogenic Escherichia coli. Vet Microbiol 84:207–218. doi:10.1016/S0378-1135(01)00463-1

    Article  PubMed  Google Scholar 

  • Yu HF, Wang AN, Li XJ, Qiao SY (2008) Effect of viable Lactobacillus fermentum on the growth performance, nutrient digestibility and immunity of weaned pigs. J Anim Feed Sci 17:61–69

    Google Scholar 

  • Zamoyska R (1998) CD4 and CD8: modulators of T-cell receptor recognition of antigen and of immune response? Curr Opin Immunol 10:82–87. doi:10.1016/S0952-7915(98)80036-8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The investigation was financially supported by the National Basic Research Program (2004 CB 117504) and Beijing Key Technologies of R&D Program Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyan Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Yu, H., Gao, X. et al. Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets. Antonie van Leeuwenhoek 96, 89–98 (2009). https://doi.org/10.1007/s10482-009-9339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9339-2

Keywords

Navigation