Skip to main content
Log in

Marcinkiewicz summability of Fourier series, Lebesgue points and strong summability

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Under some conditions on \({\theta}\), we characterize the set of convergence of the Marcinkiewicz-\({\theta\mbox{-}}\)means of a function \({f \in L_1(\mathbb{T}^d)}\). More exactly, the \({\theta\mbox{-}}\)means converge to f at each modified strong Lebesgue point. The same holds for a weaker version of Lebesgue points, for the so called modified Lebesgue points of \({f \in L_p(\mathbb{T}^d)}\), whenever \({1 < p < \infty}\). The \({\theta\mbox{-}}\)summability includes the Fejér, Abel, Cesàro and some other summations. As an application we give simple proofs for the classical one-dimensional strong summability results of Hardy and Littlewood, Marcinkiewicz, Zygmund and Gabisoniya and generalize them for strong \({\theta\mbox{-}}\)summability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. K. Bary, A Treatise on Trigonometric Series, Pergamon Press (Oxford, 1964).

  2. E. S. Belinsky, Summability of multiple Fourier series at Lebesgue points, Theory of Functions, Functional Analysis and their Applications, 23 (1975), 3–12 (in Russian).

  3. E S Belinsky, Application of the Fourier transform to summability of Fourier series, Sib. Mat. Zh., 18 (1977), 497–511 (in Russian); English transl. in Siberian Math. J., 18 (1977), 353–363.

  4. Belinsky E. S.: Summability of Fourier series with the method of lacunary arithmetical means at the Lebesgue points. Proc. Amer. Math. Soc., 125, 3689–3693 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser Verlag (Basel, 1971).

  6. Fefferman C.: On the convergence of multiple Fourier series. Bull. Amer. Math. Soc., 77, 744–745 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feichtinger H. G., Weisz F.: The Segal algebra \({{\bf S}_0(\mathbb{R}^d)}\) and norm summability of Fourier series and Fourier transforms. Monatsh. Math., 148, 333–349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feichtinger H. G., Weisz F.: Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Cambridge Philos. Soc., 140, 509–536 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fejér L: Untersuchungen über Fouriersche Reihen. Math. Ann., 58, 51–69 (1904)

    Article  MATH  Google Scholar 

  10. O. D. Gabisoniya, On the points of strong summability of Fourier series, Mat. Zametki, 14 (1973), 615–626 (in Russian); English translation in Math. Notes, 14 (1973), 913–918.

  11. O. D. Gabisoniya, On points of strong summability of Fourier series, Ukrain. Mat. Zh., 44 (1992), 1020–1031 (in Russian); English translation in Ukrainian Math. J., 44 (1992), 923–932.

  12. Gát Gy.: Pointwise convergence of cone-like restricted two-dimensional (C, 1) means of trigonometric Fourier series. J. Approx. Theory, 149, 74–102 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gát Gy., Goginava U., Nagy K.: On the Marcinkiewicz–Fejér means of double Fourier series with respect to Walsh–Kaczmarz system. Studia Sci. Math. Hungar., 46, 399–421 (2009)

    MATH  MathSciNet  Google Scholar 

  14. Gát Gy.: Almost everywhere convergence of sequences of Cesàro and Riesz means of integrable functions with respect to the multidimensional Walsh system. Acta Math. Sin. Engl. Ser., 30, 311–322 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goginava U: Marcinkiewicz–Fejér means of d-dimensional Walsh–Fourier series. J. Math. Anal. Appl., 307, 206–218 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goginava U: Almost everywhere convergence of (C, a)-means of cubical partial sums of d-dimensional Walsh–Fourier series. J. Approx. Theory, 141, 8–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goginava U: The maximal operator of the Marcinkiewicz–Fejér means of \({d\mbox{-}}\)dimensional Walsh–Fourier series. East J. Approx., 12, 295–302 (2006)

    MathSciNet  Google Scholar 

  18. Goginava U., Gogoladze L., Karagulyan G.: BMO-estimation and almost everywhere exponential summability of quadratic partial sums of double Fourier series. Constr. Approx., 40, 105–120 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education (Upper Saddle River, NJ, 2004).

  20. Hardy G. H., Littlewood J. E.: Sur la séries de Fourier d’une fonction à carré sommable. Comptes Rendus (Paris), 156, 1307–1309 (1913)

    MATH  Google Scholar 

  21. Hardy G. H., Littlewood J. E.: The strong summability of Fourier series. Fund. Math., 25, 162–189 (1935)

    Article  MATH  Google Scholar 

  22. Lebesgue H.: Recherches sur la convergence des séries de Fourier. Math. Ann., 61, 251–280 (1905)

    Article  MATH  MathSciNet  Google Scholar 

  23. E. R. Liflyand, Lebesgue constants of multiple Fourier series., Online J. Anal. Comb., 1 (2006), Article 5, 112 pp.

  24. Marcinkiewicz J.: Sur la sommabilité forte des series de Fourier. J. London Math. Soc., 14, 162–168 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  25. Marcinkiewicz J.: Sur une méthode remarquable de sommation des séries doubles de Fourier. Ann. Scuola Norm. Sup. Pisa, 8, 149–160 (1939)

    MATH  MathSciNet  Google Scholar 

  26. Persson L. E., Tephnadze G., Wall P.: Maximal operators of Vilenkin–Nörlund means. J. Fourier Anal. Appl., 21, 76–94 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Riesz M.: Sur la sommation des séries de Fourier. Acta Sci. Math. (Szeged), 1, 104–113 (1923)

    MATH  Google Scholar 

  28. Rodin V. A.: The space BMO and strong means of Fourier series. Anal. Math., 16, 291–302 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. V. A. Rodin, Rectangular oscillation of the sequence of partial sums of a multiple Fourier series and absence of the BMO property, Mat. Zametki, 52 (1992), 152–154 (in Russian).

  30. Simon P.: Cesàro summability with respect to two-parameter Walsh systems. Monatsh. Math., 131, 321–334 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Simon P.: \({(C, \alpha)}\) summability of Walsh–Kaczmarz–Fourier series. J. Approx. Theory, 127, 39–60 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tevzadze N. R.: The convergence of the double Fourier series at a square summable function. Sakharth. SSR Mecn. Akad. Moambe, 58, 277–279 (1970)

    MathSciNet  Google Scholar 

  33. R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers (Dordrecht–Boston–London, 2004).

  34. R. M. Trigub, Linear summation methods and the absolute convergence of Fourier series, Izv. Akad. Nauk SSSR, Ser. Mat., 32 (1968), 24–49 (in Russian); English translation in Math. USSR Izv., 2 (1968), 21–46.

  35. F. Weisz, Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications, Kluwer Academic Publishers (Dordrecht–Boston–London, 2002).

  36. Weisz F.: Marcinkiewicz-summability of more-dimensional Fourier transforms and Fourier series. J. Math. Anal. Appl., 379, 910–929 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Weisz F.: Summability of multi-dimensional trigonometric Fourier series. Surv. Approx. Theory, 7, 1–179 (2012)

    MATH  MathSciNet  Google Scholar 

  38. Weisz F.: Lebesgue points of double Fourier series and strong summability. J. Math. Anal. Appl., 432, 441–462 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  39. L. Zhizhiashvili, A generalization of a theorem of Marcinkiewicz, Math. USSR Izv., 2 (1968), 1065–1075 (in Russian).

  40. L. Zhizhiashvili, Trigonometric Fourier Series and their Conjugates, Kluwer Academic Publishers (Dordrecht, 1996).

  41. Zygmund A.: On the convergence and summability of power series on the circle. II. Proc. London Math. Soc., 47, 326–350 (1941)

    MATH  MathSciNet  Google Scholar 

  42. A. Zygmund, Trigonometric Series, 3rd ed., Cambridge Press (London, 2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Weisz.

Additional information

This research was supported by the Hungarian Scientific Research Funds (OTKA) No. K115804.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weisz, F. Marcinkiewicz summability of Fourier series, Lebesgue points and strong summability. Acta Math. Hungar. 153, 356–381 (2017). https://doi.org/10.1007/s10474-017-0737-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-017-0737-z

Key words and phrases

Mathematics Subject Classification

Navigation