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The present paper links the representation theory of Lie groupoids and
infinite-dimensional Lie groups. We show that smooth representations of
Lie groupoids give rise to smooth representations of associated Lie groups.
The groups envisaged here are the bisection group and a group of groupoid
self maps. Then representations of the Lie groupoids give rise to repre-
sentations of the infinite-dimensional Lie groups on spaces of (compactly
supported) bundle sections. Endowing the spaces of bundle sections with a
fine Whitney type topology, the fine very strong topology, we even obtain
continuous and smooth representations. It is known that in the topolog-
ical category, this correspondence can be reversed for certain topological
groupoids. We extend this result to the smooth category under weaker
assumptions on the groupoids.
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Introduction and statement of results

Groupoids and their representations appear in a variety of mathematical areas. For
example, they have been studied in connection with geometric quantisation [Bos07],
representations of C∗-algebras [Bos11, Ren80,Wes67] and the study of covariance of
differential operators [Kos76, KSM02] to name just a few. In the present paper we
are interested in smooth representations of Lie groupoids. Our aim is to relate the
representations of a Lie groupoid to the representation of certain infinite-dimensional
Lie groups associated to the Lie groupoid. Recall that to every Lie groupoid G one
can associate its group of bisections Bis(G), which is an infinite-dimensional Lie group
(cf. [Ryb02, SW15]). In [KSM02] it was shown that every representation of a Lie
groupoid gives rise to a representation of Bis(G). The present article establishes
smoothness of these representations with respect to the natural smooth structure of
the bisections group. Then we prove that under mild assumptions on G a certain class
of smooth representations of the bisection group corresponds to representations of the
underlying groupoid. Furthermore, we extend the link between groupoids and bisec-
tion groups to representations of another infinite-dimensional Lie group of self-maps of
the Lie groupoid SG(α) which we introduced in [AS17]. This yields (faithful) functors
from the representation category Rep(G) of a Lie groupoid to the representation cate-
gories of the infinite-dimensional Lie groups. For α-proper groupoids (defined below)
the construction commutes with restriction to the object space, whence we obtain a
commuting diagram:

Rep(G)

ρ

xxqq
qq
qq
qq
qq ρS

&&▼
▼▼

▼▼
▼▼

▼▼
▼

Rep(Bis(G)) Rep(SG(α))
restriction

if G is α-proper

oo

Our results thus link the representation theory of (finite dimensional) Lie groupoids
and infinite-dimensional Lie groups and provide a foundation to study certain represen-
tations of a class of infinite-dimensional Lie groups via finite-dimensional Lie groupoids
or vice versa.

We will now explain our results in greater detail. For a Lie groupoid G = (G⇒M)
we denote by Bis(G) its group of bisections, i.e. the group of smooth sections σ : M → G

2



of the target map β such that the composition with the source map yields a diffeo-
morphism α ◦ σ on M . It has been shown in [SW15] that for compact source M ,
the inclusion Bis(G) ⊆ C∞(M,G) endows the bisection group with a natural manifold
structure turning it into a Lie group modelled on a Fréchet space. To make sense of
this statement (which requires calculus beyond Banach spaces), we base our investiga-
tion on smoothness in the sense of Bastiani calculus [Bas64].1 In the present paper we
do not wish to restrict ourselves to compactM , whence our first result of independent
interest is the following.

Proposition A Let G = (G ⇒ M) be a finite-dimensional Lie groupoid. Then
Bis(G) is a submanifold of the manifold of mappings C∞(M,G) (cf. [Mic80]) and this
structure turns Bis(G) into an infinite-dimensional Lie group.

To our knowledge a full proof of this fact appears in full detail for the first time in
the present paper (cf. the sketch of a generalisation in [HS17]). In view of Proposition
A, our aim is to prove that a smooth representation of a Lie groupoid G induces a
smooth representation of the infinite-dimensional Lie group Bis(G). To this end recall
that a representation of a Lie groupoid G = (G⇒ M) on a vector bundle E →M is a
morphism of Lie groupoids φ : G → Φ(E), where Φ(E) is the frame groupoid associated
to the bundle E [Mac05]. It has been shown in [KSM02] that every representation of
G gives rise to an associated representation ρφ : Bis(G) → GL(Γ(E)), where Γ(E) is
the space of smooth sections of the bundle E → M . Since the natural compact open
C∞-topology turns Γ(E) into a locally convex space, it makes sense to study continuity
and smoothness of ρφ via the associated map2

ρ∧φ : Bis(G)× Γ(E)→ Γ(E), (σ,X) 7→ ρφ(σ).X.

If the base manifold M is non-compact, continuity and smoothness of ρ∧φ are difficult
to acquire on Γ(E) due to some technical obstructions enforced by the function space
topologies involved. We discuss this in Remark 3.7 and propose a different strategy
in the present paper. The representation ρ∧φ factors through a representation on the
space of compactly supported sections Γc(E) of the bundle E. This space is again a
locally convex space, though with respect to the much finer fine very strong topology
(a Whitney type topology which coincides with the compact open C∞-topology ifM is
compact, see A.2). By abuse of notation we also denote this representation by ρ∧φ and
show that ρ∧φ is smooth in a very strong sense. Namely, ρ∧φ : Bis(G)× Γc(E)→ Γc(E)
turns out to be smooth and we call this property joint smoothness of the representation.
Thus every smooth representation of a Lie groupoid gives rise to a (joint) smooth
representation of infinite-dimensional Lie groups.
In the representation theory of C∗-algebras, a partial converse for the above con-

struction has been established in the topological category: Consider a topological

1A map f : E ⊇ X → F between (open) subsets of locally convex spaces is smooth in this sense if
all iterated partial derivatives exist and yield continuous mapping, cf. Appendix A. We remark
that this is a stronger notion of smoothness (for general locally convex spaces) then the so called
”convenient calculus”, cf. [KM97].

2Recall that the definition of smoothness of a representation ρ : H → GL(V ) of an infinite-
dimensional Lie group (on an infinite-dimensional vector space) avoids topological data on GL(V ).
Instead, one requires smoothness of the orbit maps ρv : H → V, h 7→ ρ(h).v.
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groupoid which satisfies certain assumptions (such as having enough bisections, to
be defined below), then a certain class of continuous representation of the group of
continuous bisections (viewed as a topological group) gives rise to a continuous repre-
sentation of the topological groupoid (see [Bos11]). To make this statement precise,
let us review the properties inherited by the representation. It turns out that ρφ:

• is semi-linear, i.e. there are smooth diffeomorphisms µσ of M such that

ρφ(σ).(fX) = (f ◦ µσ) ·
(

ρφ(σ).X
)

X ∈ Γc(E), f ∈ C∞(M), σ ∈ Bis(G).

• is local, i.e. if a bisection mapsm to the unit arrow 1m, then ρφ(σ).X(m) = X(m)
for all X ∈ Γc(E).

These properties already characterise the class of representations of Bis(G) which gives
rise to representations of the underlying groupoid. Namely, we obtain our second main
result.

Theorem B Let ρ : G → Φ(E) be a representation of a Lie groupoid on a vector
bundle. Then φ induces a joint smooth, semi-linear and local representation ρφ of
the bisection group Bis(G) on the compactly supported sections of E. Furthermore,
this construction yields a faithful functor Rep(G)→ Rep(Bis(G)) of the representation
categories.
If in addition, G has enough bisections3, then every joint smooth, semi-linear and

local representation of Bis(G) on a space of compactly supported sections arises in this
way.

Theorem B allows one to characterise (under suitable assumptions) the smoothness
of semi-linear representations in terms of the smoothness of Bis(G)× Γc(E)→ Γc(E).
In this respect, it provides an answer to the question raised in [KSM02, p. 230], whether
smoothness of these representations can be characterised in terms of the action of the
bisections alone.
Furthermore, it is worth noting that we just needed to assume that the Lie groupoid

has enough bisections to invert the correspondence between smooth representation. In
particular, the technical assumptions needed in the topological category in [Bos11]
are not needed for Lie groupoids. In ibid. a technical condition on the compact open
topology on C(M,G) had to be assumed and it was conjectured that this condition is
not needed for Lie groupoids. Finally, we remark that the condition of having enough
bisections is very natural if one wants to link Lie groupoids and their bisections.
Indeed in [SW16a, SW16b] the authors has shown that this condition is necessary
to reconstruct the Lie groupoid from its group of bisections. Thus it comes as no
surprise that this condition is crucial for the recovery of groupoid representations from
representations of the bisection group.
In the last part of the article we consider induced representations on a Lie group of

self-mappings of a Lie groupoid G = (G⇒M). The Lie group we envisage here is the

3A Lie groupoid G = (G ⇒ M) has ”enough bisections” if for every g ∈ G there is σg ∈ Bis(G) such
that σg(β(g)) = g.
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group of units SG(α) of the monoid

(SG :=
{

f ∈ C∞(G,G) | β ◦ f = α
}

, ⋆),

where the multiplication is defined via (f ⋆ g)(x) = f(x)g(xf(x)) (cf. [AS17]). This
group is closely associated to the bisection group Bis(G), since the latter can be realised
as a subgroup of SG(α). Similar to the bisection case, representations of the Lie
groupoid induce semi-linear representations of SG(α).

Theorem C Let φ : G → Φ(E) be a representation of the Lie groupoid G on a vector
bundle (E, π,M). Then φ induces a joint smooth semi-linear and local representation
ρφ,S of SG(α) on Γc(α

∗E) (compactly supported sections of the pullback bundle α∗E).
Further, the construction induces a faithful functor Rep(G)→ Rep(SG(α)).

Unfortunately, there seems to be no natural condition (akin to the bisection case)
which guarantees that every semi-linear, local and joint smooth representation of SG(α)
arises via the construction outlined in Theorem C. Nevertheless, it is interesting to
study the relation between the induced representations of SG(α) and Bis(G). To this
end, recall from [AS17,Ami18] that precomposition with the source map of G induces
a group monomorphism α∗ : Bis(G) → SG(α). In general, α∗ will not be smooth.
However, if one requires that G is α-proper (i.e. α is a proper map), then α∗ becomes
a morphism of Lie groups. Using this morphism, we can restrict representations of
SG(α) to representations of Bis(G). Our results subsume the following Theorem.

Theorem D Let G be an α-proper Lie groupoid, (E, π,M) a vector bundle and
ρS : SG(α)×Γc(α

∗E)→ Γc(α
∗E) a joint smooth and semi-linear representation. Then

ρS induces a joint smooth and semi-linear representation of Bis(G) on Γc(E).

Thus for α-proper Lie groupoids, the constructions are compatible in the sense that
they coincide for the bisection group. Since we are working with compactly supported
sections, note that the restriction makes sense only for α-proper groupoids.
The present article is structured as follows: In Section 1 we recall basic concepts and

prepare the approach by establishing the Lie group structure of Bis(G) for non-compact
source manifolds (Proposition A). Then Section 2 recalls some essential results on the
group of semi-linear morphisms of a C∞

c -module. Finally, Section 3 deals first with
representations on the group of bisections, then with the representations of SG(α) and
finally with functorial aspects of these constructions.

1. Infinite-dimensional Lie groups from Lie groupoids

In this section we recall first some well-known concepts and fix the notation used
throughout the paper. Then we establish the Lie group structure of the bisection
group for non-compact source manifolds (Proposition A from the introduction). We
assume that the reader is familiar with finite-dimensional Lie groupoids as presented
e.g. in the book [Mac05].
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1.1 (Conventions) We write N := {1, 2, 3, . . .} and N0 := N ∪ {0}. By G = (G ⇒ M)
we denote a finite-dimensional Lie groupoid with space of arrows G and base M .4 In
general α will be the source and β the target map of G. We suppress the unit map
1: M → G and identify M ∼= 1(M) ⊆ G.
Throughout the paper, all manifolds are assumed to be Hausdorff, and if a mani-

fold is finite-dimensional we assume in addition that it is paracompact. Appendix A
contains an outline on the infinite-dimensional calculus and facts on manifolds of map-
pings (such as the group of diffeomorphisms Diff(M)) needed in the article. For M,N
finite-dimensional manifolds, we denote by C∞

fS (M,N) the space of smooth mappings
M → N endowed with the fine very strong topology (a Whitney type topology turning
C∞(M,N) into a manifold which coincides with the compact open C∞-topology if M
is compact). See A.2 for details.

1.2 Definition (Bisections of a Lie groupoid) A bisection of a Lie groupoid G is a
smooth map σ : M → G which satisfies

β ◦ σ = idM and α ◦ σ ∈ Diff(M).

The set of all bisections Bis(G) is a group with respect to the group operations

(σ1⋆σ2)(x) = σ1(x)σ2
(

(α◦σ1)(x)
)

, σ−1 =
(

σ◦(α◦σ)−1(x)
)−1

for all x ∈M. (1)

Finally, we define the subgroup

Bisc(G) := {σ ∈ Bis(G) | there is K ⊆M compact, with σ(x) = 1x for all x ∈M \K}.

Following [SW15, Theorem A] we recall that Bis(G) is an infinite-dimensional Lie
group if M is compact. For the non-compact case, we refer to [HS17] for a sketch of
the changes. However, since no complete proof exists in the literature, we restrict to
the case of a finite-dimensional groupoid G and establish the necessary details in the
following Proposition.

1.3 Proposition Let G = (G ⇒ M) be a finite-dimensional Lie groupoid. Then
Bisc(G) and Bis(G) are submanifolds of C∞

fS (M,G) and this manifold structure turns
them into infinite-dimensional Lie groups.

Proof. Recall that Diff(M) is an open submanifold ofC∞
fS (M,M) (see [Mic80, Theorem

10.4] for the manifold structure). Further, α∗ : C
∞
fS (M,G)→ C∞(M,M), f 7→ α ◦ f is

continuous (even smooth) by [Mic80, Corollary 10.14]. Since β : G→M is a submer-
sion, the Stacey-Roberts Lemma [AS17, Lemma 2.4] asserts that β∗ : C

∞
fS (M,G) →

4One could allow G to be infinite-dimensional manifold modelled on a locally convex space. Note
that the notion of an infinite-dimensional Lie groupoid makes sense once a suitable notion of
submersion is chosen, see [SW15] and [Glö16].
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C∞
fS (M,M) is a submersion, whence the restriction θ := β∗|α−1

∗ (Diff(M)) is a submer-

sion. We deduce that θ−1(idM ) = Bis(G) is a submanifold of C∞(M,G). Similarly,
since Diffc(M) = {g ∈ Diff(M) | ∃K ⊆ M compact such that g|M\K ≡ idM} is an
open subgroup of Diff(M), we see that κ := β∗|

α
−1
∗

(

Diffc(M)
) is a submersion and

Bisc(G) = κ−1(idM ) is thus an open submanifold of Bis(G) and also of C∞
fS (M,G).

To see that these manifold structures turn Bisc(G) and Bis(G) into Lie groups, one
rewrites the formulae for the group operations as follows:

σ ⋆ τ = m∗

(

σ,Comp(τ, α∗(σ))
)

σ−1 = I∗ ◦ Comp(σ, ι ◦ α∗(σ))

where m is multiplication, I inversion in G and ι is inversion in the Lie group Diff(M)
(cf. [Mic80, Theorem 11.11]). We have already seen that the postcomposition mappings
are smooth and since α∗(Bis(G)) ⊆ Diff(M) and all diffeomorphisms are proper, we
exploit that the composition map Comp: C∞(M,G) × Prop(M,M) → C∞(M,G) is
smooth by [Mic80, Theorem 11.4]. In conclusion the group operations are smooth as
composition of smooth mappings

In the (inequivalent) convenient setting of global analysis a similar result was estab-
lished in [Ryb02] for bisection groups of finite-dimensional Lie groupoids.

1.4 Remark Similar to the arguments in [SW15] one can show that the Lie groups
Bis(G) and Bisc(G) are regular (in the sense of Milnor) and their Lie algebras are
(anti-)isomorphic to the Lie algebra of sections of the Lie algebroid associated to G.
Furthermore, we remark that the Lie group of bisections contains a surprising

amount of information on the underlying Lie groupoid. For example, one can use
it to reconstruct the Lie groupoid from the action of the bisections on the base mani-
fold under certain circumstances. We refer to [SW16b] for more information.
However, neither of these results are needed in the present paper.

The other infinite-dimensional Lie group we wish to consider arises as a group of
units of a monoid of smooth self maps of the Lie groupoid (cf. [Ami18,AS17]).

1.5 Definition Let G = (G⇒M) be a Lie groupoid, then we define the set

SG :=
{

f ∈ C∞(G,G) | β ◦ f = α
}

,

which becomes a monoid with respect to the binary operation

(f ⋆ g)(x) = f(x)g
(

xf(x)
)

, f, g ∈ SG , x ∈ G.

The source map α is the unit element of SG (Recall the identificationM ⊆ G!). Finally,
we let SG(α) := {f ∈ SG | f is invertible in SG} be the group of units of SG .

Note that SG(α) can be characterised as {f ∈ SG | R(f) ∈ Diff(G), where Rf (x) :=
xf(x)}. It was shown in [AS17, Theorem B] that SG(α) is an infinite-dimensional Lie
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group such that the map R : SG(α) → Diff(G), f 7→ Rf is a diffeomorphism onto a
closed Lie subgroup of Diff(G) (in fact R is a Lie group anti-homomorphism).

1.6 Remark 1. In general, the monoid SG will not be a differentiable monoid
(though its group of units will always be a Lie group!). If one assumes that
the underlying Lie groupoid is α-proper5 then SG is a differentiable monoid.

2. By switching the rôles of α and β in the definition, One can define another
group of bisections and another monoid S′

G of smooth self maps. However, the
resulting groups and monoids are isomorphic (cf. e.g. [Ami18, Proposition 1]
and [Mac05,SW15]), whence it suffices to consider only SG(α) and Bis(G). Note
that with our choice of conventions, [AS17, Theorem 4.11] asserts that the map

Ψ: Bis(G)→ SG(α), σ 7→ σ ◦ α

is a group monomorphism and if G is α-proper, Ψ is even a Lie group morphism.

Representations of Lie groups and groupoids

In this section we recall and fix notation for representations of Lie groupoids and
infinite-dimensional Lie groups. Let us first fix some notation before we turn to rep-
resentations of possibly infinite-dimensional Lie groups, cf. [Nee06,Nee10]).

1.7 Let V be a (possibly infinite-dimensional) locally convex vector space. We denote
by GL(V ) the group (with respect to composition) of continuous linear vector space
automorphisms of V . Recall that if V is not a Banach space, L(V, V ) does not inherit
a suitable locally convex topology from V , i.e. the correspondence

{topological group morphism T → GL(V )}
1:1
←→ {T × V → V cont. representation}

breaks down. Thus we refrain from using a topological or smooth structure on GL(V ).

1.8 Definition Let K be a (possibly infinite-dimensional) Lie group and (ρ, V ) be a
representation of K on a locally convex vector space V (i.e. ρ : K → GL(V ) is a group
morphism). We say that

• (ρ, V ) is continuous (or joint smooth) if the action map K × V → V, (k, v) 7→
ρ(k).v is continuous (or smooth),

• a vector v ∈ V is a Ck-vector, k ∈ N ∪ {∞} if the orbit map ρv : K → V, k 7→
ρ(k).v is a Ck-map. We denote by V k := V k(π) the linear subspace of Ck-
vectors, The representation (ρ, V ) is smooth if V∞ is dense in V .

5A Lie groupoid is α-proper if the source map α is a proper mapping.
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The continuity and smoothness of representations is tailored to avoid topological
data on GL(V ). In particular, we chose to outline the concept of ”smooth represen-
tations” which is usually used in infinite-dimensional representation theory (and to
distinguish it from the stronger concept of joint smoothness exhibited above). How-
ever, in the special situation we are working in, it will turn out that the representations
are joint smooth and take their values in a certain subgroup of GL(V ), the group of
semilinear automorphisms (cf. [KSM02]). We review this group in Section 2 below.

1.9 Definition Let (ρ1, V1) and (ρ2, V2) be representations of a (possibly infinite-
dimensional) Lie group K on locally convex spaces. A morphism of representations
is a continuous linear map L : V1 → V2 which is K-equivariant, i.e. ρ2(k).L = L ◦
ρ1(k) for all k ∈ K. Together with morphisms of representations, the representations
of a Lie group K form a category, which we denote by Rep(K).

We now switch from representations of (possibly infinite-dimensional) Lie groups to
representations of finite-dimensional Lie groupoids. Our notation here mainly follows
the book [Mac05].

1.10 Definition Let (E, π,M) be a vector bundle. Let Φ(E) denote the set of all
vector space isomorphisms ξ : Ex → Ey for x, y ∈M . Then Φ(E) is a Lie groupoid on
M with respect to the following structure:

• for ξ : Ex → Ey, α(ξ) is x and β(ξ) is y;

• the object inclusion map is x 7→ 1x = idEx
,

• multiplication and inversion is given by composition and inversion of linear maps.

We call the resulting groupoid Φ(E) the frame groupoid (or linear frame groupoid) of
(E, π,M).

1.11 Remark ( [Mac05, p.8 and Example 1.3.4]) The frame groupoid Φ(E) of a vector
bundle E, as defined in the Definition 1.10, is a locally trivial Lie groupoid, i.e. the
anchor map (β, α) : Φ(E)→M ×M is a surjective submersion.

1.12 Definition Let G be a Lie groupoid on M and (E, π,M) be a vector bundle.
Then a representation of G on (E, π,M) is a base preserving morphism φ : G → Φ(E)
of Lie groupoids over M , where Φ(E) is the frame groupoid of (E, π,M).

1.13 Remark Every representation φ : G → Φ(E) induces a smooth linear action6

Φ: G×α E → E, (g, e) 7→ φ(g).e,

6Compare [Mac05, Definition 1.6.1 and Proposition 1.7.2] where it is shown that this is even equiva-
lent (note that loc.cit. claims this only for G locally trivial, though the argument holds for arbitrary
Lie groupoids.

9



where G ×α E := {(g, e) ∈ G × E | α(g) = π(e)} is the pullback manifold. In the
following we will always denote by Φ the linear action associated to the Lie groupoid
representation φ.

1.14 Definition Let G = (G⇒M) be a Lie groupoid and (E, π,M), (F, q,M) vector
bundles. A morphism of Lie groupoid representations φ1 : G → Φ(E) and φ2 : G →
Φ(F ) is a base preserving bundle morphism δ : E → F which is equivariant with
respect to the linear action Φ1 and Φ2, i.e.

δ ◦ Φ1(g, ·) = Φ2(g, ·) ◦ δ ∀g ∈ G.

The representations of G form together with morphisms of representations a category
which we denote by Rep(G)

1.15 Example Let (E, π,M) be a vector bundle and K a Lie group.

(a) If M = {∗} is the one-point manifold and G a Lie group, then a representation
of the Lie groupoid G ⇒ {∗} on E is a representation of the Lie group G on
the vector space E. Hence Rep(G) = Rep(G ⇒ {∗}) and therefore there is no
ambiguity in our notation for the categories of representations.

(b) For the pair groupoid P(M), a representation on E corresponds to a trivialisation
of the bundle (E, π,M) (cf. [GSM17, Example 2.2]).

(c) For the trivial Lie group bundle LB(K) := (K ×M ⇒M) over M with fibre K
(viewed as a Lie groupoid), representations on E = TM (the tangent bundle of
M) are trivial (cf. [GSM17, Example 7.2]).

(d) Let K ×M → M be a (left) Lie group action. Representations of the associ-
ated action groupoid K ⋉M ⇒ M correspond to K-equivariant bundles over
M . Generalising this example, the representations of an atlas groupoid Γ(U)
representing an orbifold (Q,U) correspond to orbifold vector bundles over (Q,U)
which arise e.g. in orbifold cohomology (cf. [ALR07, Section 2.3] and see [AS17]
for a discussion of source-properness for atlas groupoids).

Contrary to the situation for Lie groups, general Lie groupoids do not admit an ”adjoint
representation” (see however 3.13 and Example 3.14). As a consequence, one was led
to the generalised notion of a ”representations up to homotopy”, see [GSM17]. In the
present article, we will only consider the classical concept, which appears naturally in
applications (e.g. in the representation theory of C∗-algebras) and translates to the
right concept of Lie group representation as explained below.

We will see in Section 3 that representations of a Lie groupoid on a vector bundle
induce representations of the infinite-dimensional groups on the sections of this bundle.
Since smooth functions act in a natural way on sections of a vector bundle, one wonders
in which way the induced representations are compatible with this structure. To answer
this question we recall the notion of semi-linear automorphisms of a module.
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2. The group of semi-linear automorphisms

In this section we discuss the group of semi-linear automorphisms of a module of
smooth functions. It turns out that semi-linear automorphisms of a space of smooth
sections are closely connected to the bisections of a the frame groupoid.

2.1 For a smooth finite dimensional manifold M we consider

C∞
c (M) := {f ∈ C∞

fS (M,R) | there is K ⊆M compact, with f |M\K ≡ 0}

with the canonical topological algebra structure. In general C∞
c (M) is a non-unital

topological algebra, as the constant 1-function is not contained in C∞
c (M) if M is

non-compact. However, if M is compact, C∞(M) is a (unital) Fréchet-algebra and
even a continuous inverse algebra [Nee08].

2.2 Definition Let M be a C∞
c (M)-module. An R-linear automorphism µ : M →

M is called semi-linear isomorphism of M if there exists an algebra isomorphism,
µM : C∞

c (M)→ C∞
c (M) satisfying

µ(f.X) = µM (f).µ(X) for all f ∈ C∞(M) and all X ∈M.

Let Sl(M) be the set of all semi-linear automorphisms of M and note that composition
turns Sl(M) into a group.

2.3 Remark Recall from [Mrc05, Bko65] that every algebra automorphism µM of
C∞

c (M) is induced by a diffeomorphism µM ∈ Diff(M), i.e.

µM (f) = f ◦ (µM )−1 =: µM .f, ∀f ∈ C∞
c (M).

We call µM the diffeomorphism associated to µM and denote its (right) action on
C∞

c (M) by µM .f . Note that a similar construction even hold for C∞(M) where M is
allowed to be infinite-dimensional (see [Gra05]).

2.4 Definition Let G be a Lie group and M be a C∞
c (M)-module which is in addition

a locally convex vector space. We call a representation (ρ,M) of G a semi-linear
representation if ρ(G) ⊆ Sl(M). A semi-linear representation is continuous (smooth)
if it is continuous (smooth) as a representation in the sense of Definition 1.8.

In the present article, we are primarily interested in semi-linear representations of
Lie groups on the module of compactly supported sections of vector bundles over a
fixed baseM . The reason is that for non compactM , the topology of the spaces Γc(E)
is amenable to our methods, whereas the one on Γ(E) is not. However, in the algebraic
setting, e.g. [KSM02] and [Nee08] (where M is assumed to be compact), proofs for the
spaces of compactly supported and general sections are completely analogous. Thus
in the (purely) algebraic setting we present the proofs for both Γ(E) and Γc(E).
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2.5 Example Let (E, π,M) be a vector bundle over M . It is well known that Γ(E)
and Γc(E) are C∞

c (M) modules with respect to the pointwise multiplication. As a con-
sequence of [KSM02], the group Sl(Γ(E)) is isomorphic to Bis(Φ(E)) and to the group
of smooth bundle automorphisms Aut(E). For the readers convenience, Proposition
2.7 recalls these details and establish an isomorphism Sl(Γc(E)) ∼= Bis(Φ(E)).7

The isomorphism in Example 2.5 allows us to turn Sl(Γc(E)) into an infinite-
dimensional Lie group (see [Nee08] for the special case of M being compact). The
following constructions are purely algebraic, whence independent of topologies on
C∞

c (M),Γ(E) and Γc(E). As a first step we extract from [Nee08, Example 2.5] the
following.

2.6 Lemma Let (E, π,M) be a smooth vector bundle and M ∈ {Γ(E),Γc(E)}. Then
µ ∈ Sl(M) induces a (smooth) bundle automorphism φµ which acts by the diffeomor-
phism µM (Remark 2.3) on M .

Proof. Consider the maximal ideal Im := {f ∈ C∞
c (M) | f(m) = 0}. Using local

triviality of the bundle E, it is easy to see [Nes03, Lemma 11.8], that the kernel of
the evaluation map evm(X) = X(m) is ImM. This yields a vector space isomorphism
M/ImM ∼= Em and we identify E with the disjoint union E =

⊔

mM/ImM.
For µ ∈ Sl(M) we denote the corresponding algebra isomorphism of C∞

c (M) by
µM and the induced diffeomorphism by µM ∈ Diff(M) (cf. Remark 2.3). Then
µM (Im) = IµM (m) and thus µ(X + ImM) = µ(X) + IµM (m)M. In conclusion, the
value µ(X)(µM (m)) does only depend on the value of X(m), whence we obtain a
well-defined map

φµ : E → E, v 7→ µ(Xv)(µM (π(v))), where Xv(π(v)) = v. (2)

Since µ is R-linear, φµ is linear in each fibre and it is a bijection since µ is an iso-
morphism of M. To see that φµ is smooth, one works in a neighbourhood of m ∈ M
and chooses a subset {X1, . . . , Xk} ⊆ M such that in an m-neighbourhood the ele-
ments {X1(n), . . . Xk(n)} form a base of TnM . Applying (2) to this family we obtain

φµ(e,
∑k

i=1 siXi(e)) = (µM (e),
∑k

i=1 siµ(Xi)(µM (e)) which is clearly smooth.

2.7 Proposition Let (E, π,M) be a vector bundle over the finite-dimensional manifold
M and Φ(E) be its frame groupoid. Then there is a group isomorphism

γ : Bis(Φ(E))→ Sl(Γc(E)), γ(σ) : ξ 7→ (x 7→ σ(x).ξ(α ◦ σ(x))), (3)

which factors through a group isomorphism Bis(Φ(E)) ∼= Aut(E).

7The construction in [KSM02] uses the alternative convention for bisections (reversing the rôle of α
and β). Furthermore, a crucial step uses [Kos76, Proposition 4] for which a complete proof (for
which we thank K.–H. Neeb) is only contained in [Nee08].
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Proof. We establish first the isomorphism Bis(Φ(E)) ∼= Aut(E). Then we prove that
Aut(E) is isomorphic to Sl(Γc(E)).

Step 1: Bis(Φ(E)) is isomorphic to Aut(E). Consider the mapping

B : Bis(Φ(E))→ Aut(E), with B(σ)(v) = σ
(

(α ◦ σ)−1(π(v))
)

.v. (4)

By definition of the frame groupoid, B(σ) is contained in Aut(E) for every σ ∈
Bis(Φ(E)). Further, it is easy to check that the automorphism B(σ) covers (α ◦ σ)−1

(i.e. π ◦B(σ) = (α ◦σ)−1 ◦π). Let us now present a bundle automorphism F as a pair
(F, bF ), where F covers bF ∈ Diff(M). Then an inverse of (4) is given by the map

Aut(E)→ Bis(Φ(E)), (F, bF ) 7→ (x 7→ σF (x) := F |E
b
−1
F

(x)
) (5)

We note that (5) makes sense as smoothness of (x 7→ σF (x)) can be established
by local triviality of E (cf. [KSM02, Proof of Proposition 5.4]) An easy but tedious
computation shows that B and its inverse are group (iso-)morphisms, whence we can
identify Bis(Φ(E)) with Aut(E).

Step 2: A group monomorphism Aut(E)→ Sl(Γc(E)). Consider the map

ν : Aut(E)→ Sl(Γc(E)), (F, bF ) 7→ (ξ 7→ F ◦ ξ ◦ b−1
F ). (6)

Note that for every ξ ∈ Γc(E)), also the section ν(F, bF ).ξ has compact support (as
bF ∈ Diff(M)). Thus (6) makes sense and F ◦(f ·ξ)◦b−1

F = (b−1
F )∗(f)·(F ◦ξ◦b−1

F ) shows
that we obtain a semi-linear isomorphism of Γc(E). A straight forward calculation
shows that (6) is a group (mono-)morphism.

Step 3: The inverse of ν. Let us explicitly construct an inverse for ν. Recall from
Lemma 2.6 that to every µ ∈ Sl(Γc(E)) there is an associated bundle automorphism
φµ of E Hence we can define

ν−1 : Sl
(

Γc(E)
)

→ Aut(E), µ 7→ (φµ, µM ).

To see that this map inverts ν we compute for µ ∈ Sl(Γc(E)) as follows ν(ν−1(µ)) =
(ξ 7→ φµ ◦ ξ ◦ µ

−1
M ). Evaluating the sections in x ∈ M we see that ν(ν−1(µ))(ξ)(x) =

µ(ξ)(x), ∀x ∈M , whence ν ◦ ν−1 is the identity on Sl(Γc(E)). Conversely, let us prove
that ν−1 ◦ ν is the identity. If (F, bF ) ∈ Aut(E), then by the Step 2 µ(F ) := ν(F, bF )
satisfies µ(F )(ξ) = F ◦ ξ ◦ b−1

F , whence µF is a semi-linear isomorphism on Sl(Γc(E))
with associated diffeomorphism µ(F )M = bF (cf. Remark 2.3). Now we will show
that ν−1(ν(F, bF )) = ν−1(µ(F )) = (F, bF ): It is enough to show that on each fibre
Em,m ∈ M we have equality of ν−1(µ(F )) and F . Consider x ∈ Em and X ∈ Γc(E)
be such that evm(X) = X(m) = x.Now

ν−1(µ(F ))(x) = µ(F )(X)(bF (m)) = F ◦X ◦ b−1
F (bF (m)) = F (x) (7)

As x was arbitrary, (7) implies ν−1 ◦ ν((F, bF )) = (F, bF ).

Composing the group isomorphisms ν and B we obtain (3).
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We will now always endow Sl(Γc(E)) with the unique infinite-dimensional Lie group
structure making it isomorphic to the Lie group Bis(Φ(E)) (see Proposition 1.3). For
M compact this has been studied in [Nee08] in the context of Lie group extensions
associated to actions on continuous inverse algebras. Furthermore, it is a classical
result that the group Aut(E) of bundle automorphisms can be turned into an infinite-
dimensional Lie group (see e.g. [ACMM89]). Comparing the two Lie group structures,
it is then easy to see that the group isomorphism Bis(Φ(E)) ∼= Aut(E) becomes a
diffeomorphism, whence the smooth structures on both groups are isomorphic:

2.8 Corollary Let (E, π,M) be a smooth vector bundle. Then Bis(Φ(E)) and Aut(E)
are isomorphic as Lie groups.

2.9 Remark Note that the proof of Proposition 2.7 did neither use the topological
structure of Γc(E) nor any topological information on the algebra C∞

c (M). Hence we
could without any changes replace Γc(E) with the module Γ(E). In particular, this
implies Sl(Γc(E)) ∼= Aut(E) ∼= Sl(Γ(E)).

From the purely algebraic point of view (disregarding continuity and smoothness)
Remark 2.9 shows that it is irrelevant whether we consider the semi-linear representa-
tion introduced in the next section on Γ(E) or Γc(E).

3. Linking representations of Lie groupoids and

infinite-dimensional Lie groups

In this section we will show that for a Lie groupoid G, a representation G → Φ(E),
induces semi-linear representation of the Lie groups Bis(G) and SG(α). Conversely, we
will prove that under suitable assumptions on G, certain semi-linear representations of
Bis(G) and SG(α) are induced by representations of the underlying Lie groupoid.

Representations of the bisection group

In this section we will discuss the relation between representations of the Lie groupoid
G and of the Lie group Bis(G). Our approach is inspired by the approach in [KSM02,
Section 5] and [Bos11, Section 3.5]. Note however, that in the first case, the bisections
were considered without topological or smooth structure and in the second source
these questions were treated only in a topological framework (but for fields of Hilbert
spaces).8

8In fact [Bos11] deals with topological groupoids and representations on continuous fields of Hilbert
spaces. In addition Bis(G) (understood as the group of continuous sections) is then treated as a
topological group.

14



3.1 Proposition Let G be a locally trivial Lie groupoid on M , (E, π,M) be a vec-
tor bundle and φ : G → Φ(E) be a representation of G. Then φ induces semi-linear
representation ρφ : Bis(G)→ Sl

(

Γ(E)
)

of Bis(G) given by the formula

ρφ(σ)(ξ)(m) := φ(σ(m))
(

ξ(α ◦ σ(m))
)

,m ∈M, ξ ∈ Γc(E). (8)

Moreover, the representation restricts to a semi-linear representation on Γc(E) which
we also denote by ρφ : Bis(G)→ Sl

(

Γc(E)
)

Proof. Let us first prove that ρφ(σ) : Γ(E)→ Γ(E) (or ρφ(σ) : Γc(E)→ Γc(E)) makes
sense.

Step 1: ρφ(σ)(ξ) is a (compactly supported) section if ξ is a (compactly supported)
section. Note that by (8), we have

π
(

(ρφ(σ)(ξ))(m)
)

= π
(

(φ(σ(m))(ξ(α ◦ σ(m))))
)

= β(σ(m)) = m,

whence the image is again a section.

Let now ξ ∈ Γc(E), K = suppξ and σ ∈ Bis(G). Then ρφ(σ)(ξ)(m) = φ(σ(m))
(

ξ(α◦

σ(m))
)

for every m ∈ M . Since φ(σ(m)) is an isomorphism, ρφ(σ)(ξ)(m) /∈ im 0M if

and only if ξ(α ◦ σ(m)) 6= 0. Therefore α ◦ σ(m) ∈ K and m ∈ (α ◦ σ)−1(K). Hence

{m ∈M : φ(σ)(ξ)(m) /∈ im 0M} ⊆ (α ◦ σ)−1(K),

which is compact since α◦σ ∈ Diff(M). Consequently ρφ(σ)ξ is compactly supported.

Step 2: ρφ(σ)(ξ) is smooth, whence ρφ(σ) : Γ(E) → Γ(E) makes sense. Since φ is
a representation of the Lie groupoid G on E, [Mac05, Proposition 1.7.2] implies that
Φ: G ×α E → E, (g, x) 7→ φ(g)(x) is smooth, where the pullback manifold is given as

G×αE := {(g, x) : x ∈ Eα(g)}. We conclude thatm 7→ φ(σ(m))
(

ξ(α◦σ(m))
)

is smooth

as a composition of the smooth maps M → G ×α E,m 7→
(

σ(m), ξ
(

α ◦ σ(m)
)

)

and

Φ: G×α E → E and therefore it is smooth and ρφ(σ)(ξ) ∈ Γ(E) or ρφ(σ)(ξ) ∈ Γc(E)
if ξ ∈ Γc(E).

Step 3: ρφ is a semi-linear representation of Bis(G) on Γ(E) whence also on Γc(E).
It is straightforward to check that ρφ(σ1 ⋆ σ2) = ρφ(σ1) ◦ ρφ(σ2) for σ1, σ2 ∈ Bis(G).
As ρφ(σ) is clearly linear, ρφ defines a group morphism from Bis(G) to GL(Γ(E))
and thus ρφ is a representation of Bis(G) on Γ(E). A direct computation shows that
ρφ(σ)(fX) = f ◦ (α ◦ σ).ρφ(σ)(X) holds for all f ∈ C∞(M) and X ∈ Γ(E). Thus
ρφ(σ) ∈ Sl(Γ(E)) ∼= Sl(Γc(E)) with associated diffeomorphism α ◦ σ.

The representations ρφ we have constructed for Bis(G) are local in the following
sense:

15



3.2 Remark Let φ : G → Φ(E) be a representation of a Lie groupoid G = (G⇒ M),
M ∈ {Γ(E),Γc(E)} and ρφ : Bis(G) → Sl(M) be the semi-linear representation from
Proposition 3.1. A trivial computation using (8) shows that ρφ satisfies the following
locallity condition:

σ ∈ Bis(G), σ(m) = m ∈M then
(

ρφ(σ)ξ)(m) = ξ(m) for all ξ ∈M.

Locality can conveniently be phrased in terms of the natural SG(α)-action on G.

3.3 (Natural SG(α) action) For G = (G⇒M), the group SG(α) acts on G via

γSG
: SG(α)×G→ G, (f, x) 7→ f.x := x · f(x).

Using the group morphism Ψ (Remark 1.6), we obtain an action9 of Bis(G) on G:

γBis : Bis(G)×G→ G, (σ, x) 7→ Ψ(σ).x = x · σ(α(x))

Finally, we remark that γSG
and γBis are smooth, whence Lie group actions.

Now the SG(α)-action allows us to rephrase the concept of a local action discussed
in Remark 3.2:

3.4 Definition Let G = (G⇒M) be a Lie groupoid and (E, π,M) be vector bundle
and M ∈ {Γ(E),Γc(E)}. We say that a representation ρ : Bis(G)→ GL(M) is local if

γBis(σ,m) = m implies ρ(σ)ξ(m) = ξ(m) for all ξ ∈M.

Similarly, for L ∈ {Γ(α∗E),Γc(α
∗E)} a representation ρ̂ : SG(α)→ GL(L) is local if

γSG
(f, g) = g implies ρ̂(f)ξ(g) = ξ(g) for all ξ ∈ L.

3.5 Corollary Let G be a Lie groupoid onM , (E, π,M) be a vector bundle and φ : G →
Φ(E) be a representation of G. Then the induced semi-linear representation ρφ is local.

Having established the algebraic correspondence between representations of a Lie
groupoid and its bisection group we turn now to the smoothness of the induced rep-
resentation.

3.6 Proposition Let φ be a representation of the Lie groupoid G on the vector bundle
E, then the map ρφ : Bis(G) → Sl(Γc(E)) from Proposition 3.1 is joint smooth, i.e.
the associated map ρ∧φ : Bis(G)× Γc(E)→ Γc(E), (σ,X) 7→ ρφ(σ).X is smooth.

9Note that this action is not the natural action Bis(G), i.e. Bis(G) ×M → M, (σ,m) 7→ α ◦ σ(m)

16



Proof. Let us first rewrite the formula for the representation with the help of the linear
action map (cf. Remark 1.13):

ρφ(σ)(ξ) = Φ ◦ (σ, ξ ◦ α ◦ σ) = Φ∗ ◦ (σ,Comp(ξ, α∗(σ))). (9)

Here we used Φ∗ : C
∞(M,G×αE)→ C∞(M,E), f 7→ Φ◦f , α∗ : Bis(G)→ C∞(M,M)

and Comp: C∞(M,E) × Prop(M,M), (g, h) 7→ g ◦ h where Prop(M,M) denotes the
set of proper mappings in C∞(M,M). Note that the signature of Comp makes sense
as α∗(Bis(G)) ⊆ Diff(M) ⊆ Prop(M,M).
We claim that all the mappings in (9) are smooth as mappings of (σ, ξ) and thus

ρφ is smooth. To see this recall that for a smooth mapping f : K → L between
manifolds, the map f∗ : C

∞
fS (M,K) → C∞

fS (M,L) is smooth [Mic80, Corollary 10.14].
Now G×αE ⊆ G×E is a split submanifold, whence C∞(M,G×αE) ⊆ C∞(M,G×E)
is a closed submanifold (combine [Glö16, Lemma 1.13] and [Mic80, Proposition 10.8]).
In addition Bis(G) is a submanifold of C∞

fS (M,G) and we can thus conclude that α∗

and Φ∗ in (9) are smooth (using again [Mac05, Proposition 1.7.2] for the smoothness
of Φ). Further Comp is smooth by [Mic80, Theorem 11.4]. This already proves that
ρφ is smooth as a mapping into C∞

fS (M,E)
To conclude the proof we note that Γc(E) is a locally convex space and a closed

submanifold of C∞
fS (M,E) (it is the preimage π−1

∗ (idM ) of the smooth mapping π∗,
compare [Mic80, Corollary 10.14]). As ρφ takes its image in the closed submanifold,
ρφ is indeed smooth as a mapping into Γc(E).

Proposition 3.6 has only be established for compactly supported sections and we
will now point out the reasons for not establishing it for the space of all sections.

3.7 Remark To establish continuity and joint smoothness of ρφ : Bis(G)→ Sl(Γc(E)),
we exploited that Comp: Γc(E) × Prop(M,M) → C∞

fS (M,E) is smooth. This does
not carry over to the Γ(E) case as Γ(E) ⊆ C∞(M,E) carries the compact open C∞-
topology which does not turn C∞(M,E) into a manifold (cf. [KM97, p. 429]). Hence it
makes no sense to discuss smoothness of the analogous joint composition map. Though
this does not rule out that the induced representations could be (joint) smooth on Γ(E),
the proof strategy of Proposition 3.6 fails. As smoothness of (joint) composition maps
is a powerful tool (whose proof is quite involved, cf. [Mic80, Theorem 11.4]) we expect
that an analogue of Proposition 3.6 for ρφ : Bis(G)→ Sl(Γ(E)) would require a serious
technical effort using specialised arguments.
We wish to stress that this problem arises only if the source manifold M is non-

compact. For compact M Proposition 3.6 trivially holds for Γ(E) as it coincides with
Γc(E). Moreover, it stands to reason that for non-compact M the spaces Γc(E) with
the fine very strong topology might actually be the more relevant space in infinite-
dimensional geometry as they are the model spaces of manifolds of mappings.

As we have only established (joint) smoothness of the representations ρφ on spaces
of compactly supported sections we will from now on restrict our attention to this case.
The idea is to construct from a smooth representation on compactly supported sections
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a (smooth) representation of the underlying Lie groupoid. To this end, we need to
consider Lie groupoids for which the groups Bis(G) and SG(α) encode much of the
relevant information on the underlying groupoid (see e.g. [SW16b,SW16a] and [AS17]
for further information on this topic).

3.8 Definition A Lie groupoid G = (G⇒M) is said to have enough bisections, if for
every g ∈ G there is σg ∈ Bis(G) with σg(β(g)) = g.

We will now establish a converse to Proposition 3.6 and construct representations
of the underlying Lie groupoid if it has enough bisections.

3.9 Proposition Let G = (G ⇒ M) be a Lie groupoid which has enough bisection,
(E, π,M) is a smooth vector bundle and ρ : Bis(G)→ Sl

(

Γc(E)
)

is a joint smooth local
representation, then ρ = ρφ for a smooth representation φ : G → Φ(E) (cf. Proposition
3.1).

Proof. For convenience set M = Γc(E) and consider σ ∈ Bis(G). Then ρ(σ) : M→ M

is a semi-linear isomorphism and due to Proposition 2.7 we have the following data
associated to ρ(σ):

• a diffeomorphism ρ(σ)M (cf. Remark 2.3), induced by a bisection of the frame
groupoid, i.e. for every g ∈ G we have ρ(σ)M .(α(g)) = β(g) (due to Step 1 of
Proposition 2.7),

• a bundle automorphism Fρ(σ) : E → E which covers ρ(σ)M .

We can thus define a representation of the groupoid G on E as follows. Since G has
enough bisection, for each g ∈ G choose a bisection σg ∈ Bis(G) with σg

(

β(g)
)

= g.
Also [Nes03, Lemma 11.8] implies that for h ∈ E with h ∈ π−1(α(g)) there exists a
section ξh ∈M with ξh(α(g)) = h. We now define the action

φ : G→ Φ(E), φ(g)h := σg.h := (ρ(σg).ξh)
(

ρ(σg)M .(α(g))
)

= Fρ(σg)(h) (10)

and note that by definition φ does not depend on the choice of ξh (by the computation
in Step 3 of Proposition 2.7).
We have to prove that the definition of φ(g) is independent of the choice of σg ∈

Bis(G). To this end consider, σg, σ
′
g ∈ Bis(G) with σg(β(g)) = σ′

g(β(g)) = g, whence
(σg ⋆ σ

′−1
g )(β(g)) = β(g) (remember the identification M ⊆ G). Since ρ is a local

representation (see the Remark 3.2), we conclude that for every ξ ∈ M

(

ρ
(

σg ⋆ (σ
′−1
g )

)

ξ − ξ
)

(β(g)) = 0,

Replacing ξ by η := (ρ(σ′
g)ξ) we obtain (ρ(σg)ξ)(β(g)) = (ρ(σ′

g)ξ)(β(g)), whence φ(g)h
is independent of the choice of σg.
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Since ρ is a representation and the identifications in Proposition 2.7 are by group
isomorphisms, φ is a groupoid homomorphism. In more detail, let (g1, g2) ∈ G

2 and
σi ∈ Bis(G) such that σi(β(gi)) = gi for i ∈ {1, 2}. Then it is easy to check that
(σ1 ⋆ σ2)(β(g1g2)) = g1g2 and since β(g1g2) = β(g1) and α(g1g2) = α(g2), we see for
every h ∈ Eα(g2) and ξ ∈ M with ξ(α(g2)) = h that

φ(g1g2)h =
(

ρ(σ1 ⋆ σ2)ξ
)

(β(g1)) =
(

ρ(σ1)ρ(σ2)ξ
)

(β(g1))

=
(

φ(g1)
(

φ(g2)h
)

.

The last equality follows from the fact that
(

ρ(σ2)ξ
)

(α(g1)) =
(

ρ(σ2)ξ
)

(β(g2)) =
φ(g2)h and σ1(β(g1)) = g1. Similar computations yield the compatibility with units
and inversion, whence φ : G → Φ(E) is a morphism of groupoids. Thus we obtain a
representation of G if φ is smooth. We postpone the proof of smoothness to Lemma
3.10 below.
Finally we check that ρ = ρφ. To do this, let σ ∈ Bis(G) and ξ ∈ M be arbitrary.

By Proposition 3.1 we have ρφ(σ)(ξ)(m) = φ(σ(m))(ξ(α ◦ σ(m)). Now the definition
of φ (with g = σ(m) and h = ξ(α ◦ σ(m)), i.e. we can choose σg := g and ξh := ξ)
yields the formula

(ρφ(σ)ξ)(m) = φ
(

σ(m)
)

(

ξ(α ◦ σ(m))
)

= ρ(σ).ξ((ρφ)M .(α ◦ σ(m)) = ρ(σ).ξ(m),

where the last equality follows from the above by (ρφ)M (β(σ(m)) = α(σ(m)) (and we
note that (ρφ)M .x = (ρφ)

−1
M (x) for all x ∈M . We conclude that ρ = ρφ.

3.10 Lemma Let G = (G ⇒ M) be a Lie groupoid which has enough bisection,
(E, π,M) a smooth vector bundle and ρ : Bis(G) → Sl

(

Γc(E)
)

a joint smooth repre-
sentation which is local as in Remark 3.2, then we obtain a smooth map

φ : G → Φ(E), φ(g)h := (ρ(σg)ξh)(β(g)).

Proof. Clearly it suffices to test smoothness (and continuity) of φ locally around a
given g ∈ G. Fixing g, we use the local triviality of the bundle E to obtain a pair
of bundle trivialisations κi : π

−1(Ui) → Ui × F i ∈ {1, 2} such that α(φ(g)) ∈ U1

and β(φ(g)) ∈ U2. Since φ is a morphism of groupoids, the definition of the frame
groupoid shows that the open g-neighbourhood V := α−1(U1) ∩ β−1U2) ⊆ G satisfies
φ(V ) ⊆ imα−1

Φ(E)(U1) ∩ β
−1
Φ(E)(U2). Thus it suffices to establish smoothness of

φ̃ : V → U2 ×GL(F )× U1, g 7→ (β(g), κ2(β(g), ·) ◦ φ(g) ◦ κ1(α(g), ·), α(g)).

Recall that GL(F ) is an open subset of the finite-dimensional vector space L(F, F ).
Since on L(F, F ) the operator norm topology coincides with the compact open topology
(induced by the canonical inclusion into C(F, F )), we deduce from the exponential
law [AS15, Theorem A] that a mapping f : G → GL(F ) is smooth if and only if the
associated map f∧ : G × F → F, f∧(g, h) := f(g)(h) is smooth. Since the bundle
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trivialisations are smooth, the map φ̃ (and thus φ) will be smooth if V × E|U1 →
E|U2 , (g, v) 7→ φ(g).v is smooth. Recall from (10) the formula

φ(g).v = ρ(σg).ξh(ρ(σg)M .α(g)) = ρ(σg).ξh(β(g)) = evΓ(ρ(σg).ξh, β(g)),

where σg ∈ Bis(G) with σg(β(g)) = g, ξh(α(g)) = h and evΓ : Γc(E) × M → E,
denotes the evaluation. Now ρ : Bis(G) × Γc(E) → Γc(E) and evΓ are smooth. Thus
φ(g).v will be smooth in (g, v) if we can show that σg and ξh depend smoothly on (g, h).
Combining Corollary A.6 with the fact that G has enough bisections, ev : Bis(G)×M →
G, (σ,m) 7→ σ(m) is a smooth surjective submersion. The definition of a bisection
entails that by shrinking V , we may assume (cf. [Glö16, Lemma 1.7]) that there is a
smooth section of ev of the form (S1, β|V ) : V → Bis(G)×M , i.e. ev(S1(x), β(x)) = x.
Similarly Corollary A.6 shows that evΓ is a surjective submersion, whence there is an
open h-neighbourhood Wh ⊆ M together with a smooth section (S2, π|Wh

) : Wh →
Γc(E) ×M of evΓ. Since the definition of φ does neither depend on the choice of σg
nor on the choice of ξh, we can plug in the sections to see that

φ(g).h = evΓ(ρ(S1(g)).S2(h), β(g)), (g, h) ∈ V ×Wh

is smooth in (g, h). Covering V ×E|U1 with open sets of the form V ×Wh, we deduce
that (g, h) 7→ φ(g).h is smooth.

3.11 Remark Comparing our results in this section to [Bos11] who works with con-
tinuous representations of topological groupoids, one sees that in the differentiable
category, there is no need for the additional assumption of the groupoid to be ”bi-
sectional”10 made in loc.cit. We remark that the additional ingredient allowing us to
avoid this additional assumption was the existence of smooth sections for the eval-
uation maps. As long as one considers semi-linear representations of bisections on
spaces of smooth bundle sections, this argument carries over without any change to
continuous representations. Thus our results can be seen as an answer to the question
in [Bos11] whether the additional assumption can be avoided for Lie groupoids.
Further, we remark that our construction explains how to characterise the smooth-

ness of Lie groupoid representations in terms of the smoothness of representations of
its bisection group (which was an open question in [KSM02]).

3.12 Example Returning to Example 1.15, let us interpret the representations con-
structed in this section for the examples:

1. For the Lie groupoid G⇒ {∗}, we have Bis(G) = G, whence the construction is
just the identity (mapping representations of Lie groups to themselves)

2. We have seen in Example 1.15 (b) that the pair groupoid admits only repre-
sentation on trivial bundles. It is well known (e.g. [SW15]) that the bisections

10 [Bos11, p.25] In the context of the cited paper this puts an additional condition on the topology
of the space of continuous mappings C(M,G) which seems to be hard to check in practice.
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of the pair groupoid can be identified as Bis(P(M)) ∼= Diff(M). Thus if M
admits enough bisections (e.g. if M is connected, cf. [ZCZ09, SW16b]), all joint
smooth semi-linear local representations of Diff(M) on spaces of compactly sup-
ported sections correspond to representations of the pair groupoid, i.e. such a
representation can only exist on the sections of a trivial bundle.

3. In Example 1.15 (c), if M is the circle S1 and G is a Lie group, then Bis(G), the
group of bisections of the Lie groupoid G = (G ×M ⇒ M) is the loop group
C∞(S1, G) with its usual topology cf. [Bos11]. Recall that for G a compact
semisimple Lie group and X a Riemannian manifold, the representation theory
of the group C∞(X,G) is studied in [GGV77].

As a final example, we discuss adjoint representations of a class of Lie groupoids
which arises naturally in the context to partial differential equation, Lie pseudogroups
and differential Galois theory (cf. e.g. [Lor09,Yud16,GS66]).

3.13 (The jet groupoids and its bisections) Let G = (G⇒ M) be a Lie groupoid and
denote by Bisloc(G) the pseudogroup of local bisections (i.e. local sections σ of β such
that α ◦ σ is a diffeomorphism onto its image). We define the kth jet groupoid of G as
the Lie groupoid Jk(G) := (Jk(G) ⇒M) given by

Jk(G) := {jkxσ is the kth jet expansion11of σ ∈ Bisloc(G) at x ∈ dom σ},

with source and target maps αjk(j
k
xσ) = α ◦ σ(x) and βjk(j

k
xσ) = β ◦ σ(x) = x. The

pair
(

jkxσ, j
k
y τ

)

is composable if α ◦ σ(x) = y and the product is jkxσ.j
k
y τ := jkx(σ ⋆ τ)

(cf. Definition 1.2). This makes sense, since one computes

αjk

(

jkx(σ ⋆ τ)
)

= α ◦ (σ ⋆ τ)(x) = α ◦ (σ · τ ◦ α ◦ σ)(x)

= (α ◦ τ) ◦ (α ◦ σ)(x) = (α ◦ τ)(y) = αjk(j
k
y τ),

and βjk
(

jky (σ ⋆ τ)
)

= y = βjk(j
k
yσ). The smooth structure which turns Jk(G) into

a manifold (and the kth jet groupoid into a Lie groupoid) is inherited from the jet
bundle [Mic83, Theorem 1.10]. The projections jkmσ 7→ jk−1

m σ induce a sequence of
Lie groupoids (cf. [Yud16])

· · · → Jk(G)→ Jk−1(G)→ · · · → J0(G) ∼= G.

The bisection group Bis(Jk(G)) contains the group Bis(G) as a subgroup. Namely, a
direct computation shows that

hk : Bis(G)→ Bis(Jk(G)), σ 7→ jkσ, where jkσ(x) := jkxσ,

is a group morphism. Since Jk(G) is a submanifold of the kth jet bundle and Bis(G) is a
submanifold of C∞(M,G), [Mic80, Proposition 11.1] implies that hk is smooth, whence

11i.e. the map m 7→ jkmσ assigning to each m ∈ U the equivalence class of the k-Taylor expansion of
s, see [Mic83, Section 1] for details.
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a Lie group morphism. A bisection in the image Hk := hk(Bis(G)) ⊆ Bis(Jk(G)) is
called holonomic bisection, [CSS15, Section 3.1] and [Sal13, Section 1.3.2 and Example
3.1.12]. Holonomic sections are studied in connection with so called Pfaffian groupoids
arising in the study of partial differential equations. By [Sal13, Lemma 1.3.4] the
Cartan form κ on Jk(G) detects holonomic bisections in the sense that a bisection Σ
is holonomic if and only if the pullback of κ vanishes Σ∗κ = 0.

In the next example we will discuss the adjoint representation of the jet groupoid
and the induced representation on the bisection group of G.

3.14 Example (Adjoint representation of the jet groupoid) We denote by Ak :=
A(Jk(G)) the Lie algebroid associated to the kth jet groupoid (cf. [Mac05]). Then
Ak is called the kth jet algebroid. We note that A0 = A(J0(G)) = A(G) is the Lie
algebroid associated to G. Further, [Yud16, Section 1.8] establishes an isomorphism of
Lie algebroids Ak ∼= (JkA(G) → M)), where (JkA(G) → M) is the kth jet bundle of
the vector bundle A(G)→M (cf. [Mic80, Section 1]).
There is a natural linear action of the jet groupoid Jk(G) on Ak−1. Let x ∈M,ax ∈

(Ak−1)x and choose a path t 7→ jk−1
x τt ∈ α

−1
jk−1(x) with d

dt

∣

∣

t=0
jk−1
x τt = ax. We set

γt := βjk(j
k−1
x τt) to obtain a fibre-wise linear map Ak−1

α(σ(x)) → A
k−1
x defined via

jkxσ.ax :=
d

dt

∣

∣

∣

∣

t=0

(

jk−1
γt

σ
)−1
·
(

jk−1
x τt

)

·
(

jk−1
x σ

)

. (11)

One can prove, [Yud16, Chapter 2.3] that (11) yields a groupoid morphism

Ad: Jk(G)→ Φ(Ak−1), Ad(jkxσ)(ax) = jkxσ.ax,

called (for obvious reasons) the adjoint representation of the kth jet groupoid on the
(k − 1)st jet bundle. Following Proposition 3.1 we obtain an induced semi-linear rep-
resentation of Bis(Jk(G)) on the sections of Ak−1 and using the Lie group morphism
hk : Bis(G) → Bis(Jk(G), σ 7→ jkσ we obtain an induced representation of the holo-
nomic sections ρAd,hol : Bis(G)→ Γc(Ak−1) defined via

ρAd,hol(σ)(ξ)(m) := ρAd(h
k(σ))(ξ)(m) = Ad(jkσ(m))

(

ξ(αjk ◦ j
kσ(m))

)

= Ad(jkmσ)
(

ξ(α ◦ σ(m)))
)

, ξ ∈ Γc(A
k−1),m ∈M

We specialise now to k = 1 and recall that A0 = A(G). Now Bis(G) acts on G by
conjugation via Cσ(g) := σ(β(g))−1 · g · σ(α(g)). This allows one to identify (11) for
k = 1 with the derivative of the conjugation action, i.e. we obtain for k = 1 the formula

ρAd,hol(σ)(ξ)(m) = Tα◦σ(m)Cσ(1α◦σ(m))(ξ(α ◦ σ(m)), for m ∈M, ξ ∈ Γc(A(G)), (12)

(cf. [Sal13, Section 1.3.2]). One can identify Γc(A(G)) as the Lie algebra of Bis(G)
(see e.g. [SW15], the proof for non-compact M is similar). Using this identification,
one computes that the adjoint action of Bis(G) on its Lie algebra coincides with (12).
In conclusion, the adjoint action of J1(G) induces on the holonomic bisections, aka.
Bis(G), the adjoint action of the Lie group of bisections.
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Representations of SG(α)

In this section we shift our focus from the group of bisections to the group SG(α).
Similar to the last section we will establish a correspondence between smooth repre-
sentations of the groupoid G and the joint smooth (semi-linear and local) representa-
tions of the group SG(α). Again every smooth representation φ : G → Φ(E) induces a
semi-linear and local joint smooth representation

ρφ,S : SG(α)→ Sl(Γc(α
∗E)).

We will further investigate the restriction of ρφ,S to the subgroup α∗(Bis(G)) = {σ ◦
α : σ ∈ Bis(G) }. If G is α-proper, the restriction induces a semi-linear, local and
joint smooth representation Bis(G)→ Sl(Γc(E)) which we denote by ρφ,B. Finally, we
discuss how one can associate to a semi-linear, local and joint smooth representation
of SG(α) a corresponding representations of the Lie groupoid G.

3.15 Proposition Let φ : G → Φ(E) be a representation of the Lie groupoid G =
(G⇒ M) on the vector bundle (E, π,M). Then φ induces a joint smooth semi-linear
and local representation ρφ,S : SG(α)→ Sl(Γc(α

∗E)) via

ρφ,S(f)(ξ)(x) := φ
(

f(x)
)

ξ
(

Rf (x)
)

, f ∈ SG(α), ξ ∈ Γc(α
∗E), and x ∈ G, (13)

where Rf (x) = xf(x).

Proof. Let us first prove that ρφ,S yields linear mappings Γc(α
∗E))→ Γc(α

∗E)). Note
that ξ(Rf (x)) = ξ(xf(x)) ∈ Eα(xf(x)) = Eα(f(x)) and φ

(

f(x)
)

: Eα(f(x)) → Eβ(f(x)) =

Eα(x). Therefore
(

ρφ,S(f)ξ
)

(x) = φ
(

f(x)
)

ξ
(

xf(x)
)

∈ Eα(x), this means that ρφ,S(f)ξ
is a section on the fibre bundle (α∗E,α∗π,G). Now if ξ ∈ Γc(α

∗E) and K := supp(ξ)
then

{x ∈ G : ρφ,S(f)(ξ)(x) /∈ 0G} ⊆ R
−1
f (K).

Since Rf ∈ Diff(G), R−1
f (K) is compact and thus ρφ,S(f)(ξ) ∈ Γc(α

∗E). To establish

smoothness of
(

ρφ,S(f)ξ
)

in x, observe that (13) arises as a composition of the following
smooth mappings:

• G→ G×α Eπ, x 7→
(

f(x), ξ ◦Rf (x)
)

and

• the linear action Φ: G×α Eπ → Eπ with Φ(g, x) = φ(g)x.

Thus
(

ρφ,S(f)ξ
)

∈ Γc(α
∗E) for every ξ ∈ Γc(α

∗E) and clearly ρφ,S(f) is linear in ξ.
It is easy to check that ρφ,S(α).ξ = ξ for every ξ ∈ Γc(α

∗E), i.e. ρφ,S(α) is the
identity on Γ(α∗E) (and we recall that the source map α is the identity of the Lie
group SG(α)). Let us now check that ρφ,S(f ⋆ g) = ρφ,S(f) ◦ ρφ,S(g) for arbitrary
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f, g ∈ SG(α). Consider ξ ∈ Γc(α
∗E) and x ∈ G and compute as follows

(

ρφ,S(f ⋆ g)ξ
)

(x) = φ
(

(f ⋆ g)(x)
)

ξ
(

Rf⋆g(x)
)

= φ
(

f(x)g
(

Rf (x)
)

ξ
(

Rg ◦Rf (x)
)

= φ(f(x))φ
(

g(Rf (x))
)

ξ
(

Rg

(

Rf (x)
)

)

= φ(f(x))
(

ρφ,S(g)ξ
)

(

Rf (x)
)

= ρφ,S(f)
(

ρφ,S(g)ξ
)

(x) =
(

ρφ,S(f) ◦ ρφ,S(g)ξ
)

(x).

Therefore ρφ,S defines a group homomorphism SG(α) → GL(Γc(α
∗E)) and we will

check in Remark 3.16 below that ρφ,S takes its image in Sl(Γc(α
∗E)). A direct com-

putation involving (13) shows that ρφ,S is local in the sense of Definition 3.4.
Finally, we have to establish joint smoothness of the semi-linear representation ρφ,S.

Again the proof in this case is similar to the case of the induced Bis(G)-representation
in Proposition 3.6: We just note that by [AS17, Remark 2.10], R : SG(α)→ RSG(α) ⊆
Diff(G), f 7→ Rf is a diffeomorphism onto a closed Lie subgroup. Now RSG(α) is a
submanifold of Prop(G,G), whence we obtain a composition of smooth mappings

ρφ,S(f)(ξ) = Φ ◦ (f, ξ ◦Rf ) = Φ∗ ◦ (f,Comp(ξ, Rf )).

Here Φ is the linear action of G on E induced by φ (cf. Remark 1.13). In conclusion
ρφ,S is joint smooth.

3.16 Remark (Semilinearity of the induced action) In the situation of Proposition
3.15, semi-linearity ρφ,S(f) for f ∈ SG(α) can be checked as follows: Consider the map

ρGφ,S(f) : C
∞(G)→ C∞(G), ρGφ,S(f)(h) = h ◦Rf

is an algebra isomorphism (obviously induced by (ρφ,S)G := Rf ∈ Diff(G)). We thus
obtain semi-linearity, by the following, now trivial, observation:

ρφ,S(f)(hξ) = ρGφ,S(f)(h)ρφ,S(f)ξ, h ∈ C∞(G), f ∈ SG(α), ξ ∈ Γc(α
∗E).

3.17 Remark The pushforward α∗ induces injective R-linear maps

C∞(M)→ C∞(G), f 7→ f ◦ α; Γ(E)→ Γ(α∗E), ξ 7→ ξ ◦ α.

If G is α-proper, i.e. α is a proper map, these maps are smooth with respect to the
function space topologies and restrict to a smooth map ψ : Γc(E)→ Γc(α

∗E). Recall
from [AS17, Theorem 4.11] that the restriction yields a group monomorphism

Ψ: Bis(G)→ SG(α), σ 7→ σ ◦ α

which is even a Lie group morphism for α-proper groupoids. Note that by [AS17,
Example 4.13] in general Ψ(Bis(G)) 6= SG(α).

In the rest of the paper we denote by ρφ,B the representation on Bis(G) induce by
a representation φ : G → Φ(E) (see Proposition 3.1). Similarly, the representation
induced on SG(α), introduced in Proposition 3.15, is denoted by ρφ,S. The following
result relates these representations.
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3.18 Proposition Let φ : G → Φ(E) be a smooth representation of an α-proper Lie
groupoid G. Then ρφ,S induces a joint smooth, semi-linear and local representation
ρB : Bis(G)→ Sl

(

Γc(E)
)

via

(

ρB(σ)ξ
)

(α(x)) =
(

ρφ,S(Ψ(σ))ψ(ξ)
)

(x) for σ ∈ Bis(G), ξ ∈ Γc(E), (14)

where Ψ and ψ are the maps from Remark 3.17. Furthermore, if G has enough bisec-
tions, then ρB = ρφ,B.

Proof. Since G is α-proper, ψ is a smooth mapping which takes compactly supported
sections of E to compactly supported sections of α∗E. It is now easy to check that
ρφ,S(Ψ(σ))ψ(ξ) is an element of Γc(α

∗E) which is fixed on the α-fibres, so the definition
of

(

ρB(σ)ξ
)

(α(x)) makes sense. Since Ψ: Bis(G)→ SG(α) is a group morphism,

(

ρB(σ1 ⋆ σ2)ξ
)

(α(x)) =
(

ρφ,S
(

Ψ(σ1 ⋆ σ2)
)

(ψ(ξ))
)

(x)

=
(

ρφ,S(Ψ(σ1))ρφ,S(Ψ(σ2))(ψ(ξ))
)

(x)

=
(

ρφ,S(Ψ(σ1))(ρB(σ2)ξ) ◦ α
)

(x) =
(

ρB(σ1)ρB(σ2)ξ
)

)

(α(x)).

By linearity of ρφ,S and the above computation, ρB is a representation of Bis(G) on
Γc(E). We will now prove that this representation is semi-linear and local. For locality,
let σ(α(x)) = α(x) then for every ξ ∈ Γc(E) we derive locality as follows

(

ρB(σ)ξ
)

(α(x)) =
(

ρφ,S
(

Ψ(σ)
)

ψ(ξ)
)

(x) = φ
(

(

σ ◦ α
)

(x)
)

(ξ ◦ α)
(

x(σ ◦ α)(x)
)

= φ
(

σ
(

α(x)
)

)

ξ
(

α
(

xσ(α(x))
))

= φ
(

α(x)
)

ξ
(

α(x)
)

= ξ
(

α(x)
)

.

To establish semi-linearity, we recall from Remark 3.16 that ρφ,S is semi-linear with
respect to the associated diffeomorphism

ρφ,S(f)(wξ) = R∗
f (w)ρφ,S(f)ξ for every w ∈ C∞(G), f ∈ SG(α) and ξ ∈ Γc(α

∗E).

Now let w ∈ C∞(M), σ ∈ Bis(G) and ξ ∈ Γc(E).

(

ρB(σ).wξ
)

(α(x)) =
(

ρφ,S(Ψ(σ))ψ(wξ)
)

(x) =
(

ρφ,S(σ ◦ α)
(

(w ◦ α)(ξ ◦ α)
)

)

(x)

= R∗
σ◦α(ψ(w))

(

ρφ,S(σ ◦ α)ξ ◦ α
)

(x)

= (w ◦ α ◦ σ) ·
(

ρB(σ)ξ
)

(α(x)).

For the last equality we have used R∗
σ◦α(ψ(w))(x) = w ◦ α

(

x
(

σ ◦ α)(x)
)

= (w ◦ α ◦

σ)(α(x)). Since α ◦ σ ∈ Diff(M) we see that ρB is semilinear with associated algebra
isomorphism ρB(σ)

M : C∞(M)→ C∞(M), w 7→ (α ◦ σ)∗w. Since ρφ,S is joint smooth
and Ψ, ψ are smooth (since G is α-proper), (14) shows that ρB is joint smooth.
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Now Proposition 3.9 entails that ρB induces a representation φ̃ : G→ Φ(E) via

φ̃(g).h =
(

ρB(σ)ξ
)

(β(g)), where σ(β(g)) = g, and ξ(α(g)) = h.

However, inversion in the groupoid intertwines source and target mappings, whence
the definition of ρB leads to

(

ρB(σ)ξ
)

(β(g)) =
(

ρφ,S(σ ◦ α)(ξ ◦ α)
)

(g−1)

= φ
(

(σ ◦ α)(g−1)
)

(ξ ◦ α)
(

g−1(σ ◦ α)(g−1)
)

= φ(g)ξ(α(g)) = φ(g).h.

Therefore, φ̃ = φ and consequently ρB = ρφ,B.

The authors were not able to prove that every semi-linear representation of SG(α)
is induced by a representation of the underlying Lie groupoid (cf. Proposition 3.15).
Instead, we have the following (whose proof is similar to the one of Proposition 3.9):

3.19 Corollary Let G be an α-proper Lie groupoid and ρS : SG(α)→ Sl(Γc(α
∗E)) be

a joint smooth, semi-linear representation, then ρB : Bis(G)→ Sl
(

Γc(E)
)

with

(

ρB(σ)ξ
)

(α(x)) :=
(

ρS(Ψ(σ))ψ(ξ)
)

(x)

is a joint smooth semi-linear representation of Bis(G). If ρS is in addition a local
representation of SG(α), then ρB is a local representation and therefore Proposition
3.1 implies ρB = ρφ,B for some representation φ of G.

The representation φ : G → Φ(E) associated to ρS in Corollary 3.19 induces a semi-
linear representation ρφ,S of SG(α). In the following, we show that the restriction of
two sections ρS(f)ξ and ρφ,S(f)ξ onM are equal, where f ∈ SG(α), ξ ∈ Γc(α

∗E), note
that the base space of the pullback bundle α∗E is G .

3.20 Proposition Let G be an α-proper Lie groupoid which has enough bisection
and ρS : SG(α) → Sl

(

Γc(α
∗E)

)

be a joint smooth local semi-linear representation,
then there is a smooth representation φ : G → Φ(E) such that the sections ρS(f)ξ
and ρφ,S(f)ξ are equal on M , where f ∈ SG(α), ξ ∈ Γc(α

∗E) and
(

ρφ,S(f)ξ)(x) =
φ(f(x))ξ(xf(x)).

Proof. Since G has enough bisection, we choose and fix for every g ∈ G a bisection
σg ∈ Bis(G) with σg(β(g)) = g. Define fg = Ψ(σg) to obtain an element fg ∈ SG(α)
with fg(β(g)) = g. Now [Nes03, Lemma 11.8] allows us to choose for h ∈ Eα(g) a
section ξh ∈ Γc(E) with ξh(α(g)) = h. Further, ψ(ξh) ∈ Γc(α

∗E) and ψ(ξh)(g) = h.
We define a representation G via

φ : G→ Φ(E), φ(g)h :=
(

ρS(fg)ξh
)

(β(g)), where g ∈ G, h ∈ Eβ(g).
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To see that this makes sense, let ρB : Bis(G) → Sl
(

Γc(E)
)

be the representation
from Proposition 3.18 which by Corollary 3.19 is joint smooth, semi-linear and local,
whence by Proposition 3.15 induces a representation η : G → Φ(E). Now let g ∈ G
and h ∈ Eα(g). By definition we have (σg ◦ α)(β(g)) = g (using the identififaction
M ⊆ G) and ξh(α(g)) = h and thus

φ(g)h =
(

ρS(σg ◦ α)(ξh ◦ α)
)

(β(g)) = ρB(σg)ξh(β(g))

= ρη(σg)ξh(β(g)) = η(σg(β(g)))ξh(α ◦ σ(β(g)))

= η(g)ξh(α(g)) = η(g)h.

Therefore φ = η and φ is a representation of the Lie groupoid G
Now let ρφ,S be as in Proposition 3.15, then for f ∈ SG(α), ξ ∈ Γc(α

∗E) andm ∈M ,

(

ρφ,S(f)ξ
)

(m) = φ(f(m))ξ(mf(m)) = φ(f(m))ξ(f(m)) = φ(g′)h′,

where g′ = f(m) and h′ = ξ(f(m)). Since f(β(g′)) = f
(

β(f(m))
)

= f(α(m)) =
f(m) = g′, and h′ = ξ(g′), the definition of φ implies that

φ(g′)h′ =
(

ρS(f)ξ
)

(β(g′)) =
(

ρS(f)ξ
)

(β(f(m))) =
(

ρS(f)ξ
)

(m).

We conclude that ρφ,S(f)ξ(m) = φ(g′).h′ = ρS(f)ξ(m) and thus the sections coincide
on M .

Functorial aspects of the construction

In this section we discuss the functorial aspects of the constructions in the last two
sections. Recall that for a Lie groupoid G = (G⇒M) we denote by Rep(G) the cate-
gory of Lie groupoid representations. In Proposition 3.1 and Proposition 3.18 we have
seen that each representation induces a smooth (semi-linear and local) representation
of the groups Bis(G) and SG(α). We will now compute that the construction is even
functorial:

3.21 Proposition Let δ : φ1 → φ2 be a morphism between representations φ1 : G →
Φ(E), φ2 : G → Φ(F ) ∈ Rep(G) and ρφi

, ρφi,S for i ∈ {1, 2} the induced representations
of Bis(G) and SG(α). Then δ induces morphisms of representations

ρ(δ) : Γc(E)→ Γc(F ), X 7→ δ ◦X

ρS(δ) : Γc(α
∗E)→ Γc(α

∗F ), Y 7→ (α∗δ) ◦ Y,

where α∗δ : α∗E → α∗F is the bundle morphism induced by pulling back δ along α.

Proof. Note first that δ∗ : Γc(E) → Γc(F ), δ∗(X) = δ ◦ X and (α∗δ)∗ : Γc(α
∗E) →

Γc(α
∗F ), α∗δ)∗(X) = α∗δ ◦ X makes sense, as δ and α∗δ are bundle morphism over

the identity. Clearly δ∗ and (α∗δ)
∗ are linear and smooth by [Mic80, Corollary 10.14].

Thus we only have to check that the mappings are equivariant with respect to the
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group actions. However, using equivariance of δ with respect to the linear action maps
Φ1,Φ2 associated to φ1, φ2 one obtains

ρφ2(σ).(δ∗(ξ))(m) =φ2(σ(m)).δ ◦X ◦ (α ◦ σ(m)) = Φ2(σ(m), δ ◦X ◦ (α ◦ σ(m))

=δ((Φ1(σ(m)).(X ◦ α ◦ σ(m)))

=δ∗ρφ1(σ)(X)(m) ∀σ ∈ Bis(G), ξ ∈ Γc(M) and m ∈M.

Thus δ∗ is a morphism ρφ1 → ρφ2 in Rep(Bis(G)). For the SG(α) statement, we observe
first that for ξ ∈ Γc(α∗E) we have ξ(Rf (x)) ∈ Eα◦Rf (x) = Eα◦f(x) for all x ∈ G and
f ∈ SG(α). We compute then (with a harmless identification):

ρφ2,S(f)((α∗δ)
∗(ξ))(x) =φ2(f(x)).(α

∗δ)∗ξ(Rf (x)) = Φ2(f(x), δ(ξ(Rf (x))))

=δ(Φ1(f(x), ξ(Rf (x))) = (α∗δ)∗ρφ1,S(f)(ξ)(x)

As every element in a vector bundle is contained in the image of a compactly sup-
ported section, for bundle morphisms δ 6= δ′ we have ρ(δ) 6= ρ(δ′) (similarly for ρS).

3.22 Corollary Combining Propositions 3.1, 3.18 and 3.21 we obtain faithful functors

ρ : Rep(G)→ Rep(Bis(G)), (φ : G → Φ(E)) 7→ ρ(φ), (δ : φ→ φ′) 7→ ρ(δ)

ρS : Rep(G)→ Rep(SG(α)), (φ : G → Φ(E)) 7→ ρS(φ), (δ : φ→ φ′) 7→ ρS(δ)
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A. Infinite-dimensional manifolds and manifolds of

mappings

In this appendix we collect the necessary background on the theory of manifolds that
are modelled on locally convex spaces and how spaces of smooth maps can be equipped
with such a structure. Let us first recall some basic facts concerning differential calculus
in locally convex spaces. We follow [Glö02,BGN04].

A.1 Definition Let E,F be locally convex spaces, U ⊆ E be an open subset, f : U →
F a map and r ∈ N0 ∪ {∞}. If it exists, we define for (x, h) ∈ U × E the directional
derivative

df(x, h) := Dhf(x) := lim
t→0

t−1
(

f(x+ th)− f(x)
)

.

We say that f is Cr if the iterated directional derivatives

d(k)f(x, y1, . . . , yk) := (Dyk
Dyk−1

· · ·Dy1f)(x)
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exist for all k ∈ N0 such that k ≤ r, x ∈ U and y1, . . . , yk ∈ E and define continuous
maps d(k)f : U×Ek → F . If f is C∞ it is also called smooth. We abbreviate df := d(1)f
and for curves c : I →M on an interval I, we also write ċ(t) := d

dtc(t) := dc(t, 1).

Note that for Cr-mappings in this sense the chain rule holds. Hence for r ∈ N0∪{∞},
manifolds modelled on locally convex spaces can be defined as usual. The model space
of a locally convex manifold and the manifold as a topological space will always be
assumed to be Hausdorff spaces. However, we will not assume that infinite-dimensional
manifolds are second countable or paracompact. We say M is a Banach (or Fréchet)
manifold if all its modelling spaces are Banach (or Fréchet) spaces.
Direct products of locally convex manifolds, tangent spaces and tangent bundles as

well as Cr-maps between manifolds and vector bundles with locally convex fibre may
be defined as in the finite-dimensional setting. Furthermore, we define (locally convex)
Lie groups as groups with a C∞-manifold structure turning the group operations into
C∞-maps. See [Nee06,Glö02] for more details.

A.2 For smooth manifolds M,N we let C∞(M,N) be the set of smooth mappings
f : M → N . If M is a finite-dimensional (not necessarily compact) manifold and N is
a locally convex manifold. We write C∞

fS (M,N) for the space of smooth functions with
the fine very strong topology we will describe now. This is a Whitney type topology
controlling functions and their derivatives on locally finite families of compact sets.
Before we describe a basis of the fine very strong topology, we have to construct a
basis for the strong topology which we will then refine. To this end, we recall the so
called basic neighbourhoods (see [HS17]) for f ∈ C∞(M,N): Let A be compact, ε > 0
and fix a pair of charts (U,ψ) and (V, ϕ) such that A ⊆ V and ψ ◦f ◦ϕ−1 makes sense.
Using standard multiindex notation, define an elementary f -neighborhood

N r (f ;A,ϕ, ψ, ǫ) :=

{

g ∈ C∞(M,N), ψ ◦ g|A makes sense,
sup

α∈Nd
0,|α|<r

sup
x∈ϕ(A)

‖∂αψ ◦ f ◦ ϕ−1(x) − ∂αψ ◦ g ◦ ϕ−1(x)‖ < ε

}

.

A basic neighborhood of f arises now as the intersection of (possibly countably many)
elementary neighborhoods N r (f ;Ai, ϕi, ψi, ǫi) where the family (Vi, ϕi)i∈I is locally
finite. Basic neighborhoods form the basis of the very strong topology (see [HS17]).
To obtain the fine very strong topology, one declares the sets

{g ∈ C∞(M,N) | ∃K ⊆M compact such that ∀x ∈M \K, g(x) = f(x)} (⋆)

to be open and constructs a subbase of the fine very strong topology as the collection
of sets (⋆) (where f ∈ C∞(M,N)) and the basic neighbourhoods.
The fine very strong topology is an extremly fine topology, which has the advantage

that C∞
fS (M,N) becomes an infinite-dimensional manifold (cf. [Mic80] and [HS17]).

However, if M is compact, the fine very strong topology coincides with the familiar
compact open C∞-topology (see [Nee06, I.5]). IfN = Rn then the pointwise operations
turn C∞

fS (M,Rn) into a locally convex vector space.
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A.3 Let q : Y → X be a surjective submersion of smooth finite-dimensional manifolds.
Then we denote by Sq(X,Y ) ⊆ C∞

fS (X,Y ) the smooth sections of q (i.e. smooth map-
pings s with q ◦ s = idX). Recall from [Mic80, Proposition 10.10] that Sq(X,Y ) is a
splitting submanifold of C∞

fS (X,Y ).
Mostly we will be interested in the following special case: Let (E, π,M) be vector

bundle, then we let Γ(E) := Sπ(M,E) be the space of smooth sections of the bundle.
Consider for f ∈ Γ(E) its support

supp f = {x ∈M : f(x) /∈ im 0M},

where Ā denotes the closure of the set A and 0M is the zero section. We denote the
set of all compactly supported smooth section by Γc(E) and recall that the subspace
topology turns Γc(E) ⊆ Sπ(M,E) ⊆ C∞

fS (M,E) into an open submanifold of Γ(E). We
further recall that with respect to this structure the pointwise operations turn Γc(E)
into a locally convex space. Moreover, the pointwise operations turn Γ(E) and Γc(E)
into C∞(M)-modules (though not into topological modules if M is non-compact).

A.4 Remark In the above we endowed every function space with the fine very strong
topology (respectively the subspace topologies induced by it). However, we wish to
consider Γ(E) as a locally convex space and it is well known that the fine very strong
topology does not turn it into a locally convex space if M is non compact (cf. [HS17,
Proposition 4.7]). Hence whenever we speak of the locally convex space Γ(E) we
assume that Γ(E) carries the compact-open C∞ topology (which is coarser then the
fine very strong topology if M is non-compact).

We prove now that the evaluation map on spaces of sections is a smooth submersion,
i.e. that it is locally conjugate to a projection (cf. [Glö16] for more information on
submersions between infinite-dimensional manifolds).

A.5 Lemma Let q : Y → X be a smooth submersion of finite-dimensional manifolds,
then the evaluation ev : Sq(X,Y )×X → Y, (s, x) 7→ s(x) is a smooth submersion.

Proof. Due to [Mic80, Corollary 11.7] the evaluation map E : C∞
fS (X,Y ) × X →

Y, (f, x) 7→ f(x) is smooth, whence A.3 entails that its restriction ev is smooth on
Sq(X,Y ). We are left to prove the submersion property. Since Y is finite-dimensional
[Glö16, Theorem A] shows that ev will be a submersion if for every (s, x) ∈ Sq(X,Y )×
X the tangent map T(s,x) ev is surjective. Consider vx ∈ TxC

∞(∗, X) ∼= TxX and
Ys ∈ TsC∞(X,Y ) and remember that the latter tangent space is isomorphic to

{Y ∈ C∞(X,TY ) | Tq(Y ) = s and ∃K ⊆ X compact , Y |X\K ≡ 0} ∼= Γc(s
∗TY ),

where s∗TY is the pullback bundle. Combining these identifications with [Mic80, Proof
of Corollary 11.7] and [Mic80, Corollary 11.6] we obtain a formula for the tangent map

T(s,x) ev(Ys, vx) = Ts(vx) + Ys(x) ∈ Ts(x)Y.
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Evaluating in vx = 0x, T(s,x) ev(Ys, 0x) = Ys(x) is surjective by [Nes03, Lemma 11.8].

The proof of Lemma A.5 used extensively that E is a finite-dimensional vector
bundle. A version for infinite-dimensional bundles (but compact M can be found
in [SW16b]. Following [SW16b, Corollary 2.10 and Corollary 2.9], we obtain.

A.6 Corollary Let M,N be finite dimensional manifolds and G = (G ⇒ M) be a
finite-dimensional Lie groupoid, then E : C∞(M,N)×M → N,E(f,m) := f(m) and
ev : Bis(G) ×M → G, ev(σ,m) = σ(m) are smooth submersions.
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