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Abstract
This paper discusses a discrete-time queueing system in which an arriving customer
may adopt four different strategies; two of them correspond to a LCFS discipline
where displacements or expulsions occur, and in the other two, the arriving customer
decides to follow a FCFS discipline or to become a negative customer eliminating the
customer in the server, if any. The different choices of the involved parameters make
this model to enjoy a great versatility, having several special cases of interest. We
carry out a thorough analysis of the system, and using a generating function approach,
we derive analytical results for the stationary distributions obtaining performance
measures for the number of customers in the queue and in the system. Also, recursive
formulae for calculating the steady-state distributions of the queue and system size
has been developed. Making use of the busy period of an auxiliary system, the sojourn
times of a customer in the queue and in the system have also been obtained. Finally,
some numerical examples are given.

Keywords Discrete-time system · Decision problem · Trigger customers ·
Negative customers

1 Introduction

A feature that is usually found when a message is being processed in computers,
in communications switching queues, etc. is that sometimes the information incom-
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ing to the server is more actual than the one on service. In that case, the message
is moved to another place if the contained information can be used later on, or if
the information is not any more valuable, it is deleted; in both cases, the server is
upgraded. The mechanism of moving messages by the arrival of one of them is called
synchronized or triggered motion. There are several mechanisms on how and where
the messages are moved, for a survey on them refer to [1] and [2, 4, 9]. This mecha-
nism leads to service interruptions were first studied in [17] where authors studied an
M/M/1 pre-emptive two-priority queueing model with exponentially distributed ser-
vice interruption. An extensive study on such models can be consulted, for example,
in [3, 8, 11, 12, 16] and for a detailed review on queues with service interruptions,
we refer to [13].

A certain type of movement can be also considered when customers are deleted.
The process of deleting customers or killing them is defined in queueing theory as
negative customers. This type of movement can be related to the arrival of viruses
at the system. Pioneering work on discrete-time considering negative arrivals with-
out retrials was done by [5, 6] who considered several killing strategies for negative
customers. For applications in engineering, we refer to [7] and for application in
communication networks and packet transmission systems, refer to [10, 14] and [15].

The strategy used in this paper for moving customers is the one that displaces them
from the server to the first place of the queue, and it seems a realistic one because the
displaced customer can begin its service after the service completion of the customer
that has caused its displacement. The arrival of negative customers has the effect, in
this model, of eliminating the job that is currently being served, and has no influence
on the system if the server is idle.

The rest of this paper is organised as follows. The next section gives a description
of the queueing model. In Section 3, the Markov chain is studied. The queue and
system size distributions are obtained together with several performance measures
of the model. In Section 4, the busy period is obtained. In Section 5, the generating
functions of the sojourn time of a customer in the server, the queue and the system,
as well as some associated performance measures are provided. Finally, numerical
results and a section of conclusions where the main results of the paper are discussed.

2 Themathematical model

We regard a discrete-time queueing system in which the time axis is segmented into a
sequence of equal intervals, called slots. It should be pointed out that the discrete-time
model differs from the corresponding continuous-time model in the following sense:
the probability of simultaneous arrivals and departures is zero in continuous-time and
positive in discrete-time. That is why we must detail the order in which the arrivals
and departures occur in case of simultaneity in a discrete-time system. Basically,
there are two rules: (i) if an arrival takes precedence over a departure, it is identified
with Late Arrival System (LAS) (see Fig. 1a); (ii) if a departure takes precedence
over an arrival, it is recognised by Early Arrival System (EAS) (see Fig. 1b). The
former case is also known as Arrival First (AF) policy and the latter as Departure
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Fig. 1 Options of the arrival models

First (DF) policy (for more details on these and related concepts, see Hunter (1983)).
In the present paper, we will follow the second policy.

Let the time axis be marked by 0, 1, . . . , m, . . .. Consider the epochm and suppose
that the departures occur in (m−, m) and external arrivals, and the arrivals to the
server from the queue, occur, in this order in (m, m+).

It is assumed that customers arrive according to a geometrical process with rate
a, that is, a is the probability that an arrival occurs in a slot. If an arriving customer
finds the server idle, he commences his service immediately; otherwise, with proba-
bility θ0, it goes directly to the last place in the queue, with probability θ1 displaces
the customer in the server to the first place in the queue and begins its service, with
probability θ2 it expels out of the system the customer in the server and begins its
service and with probability θ3 it becomes a negative customer. The probabilities

θi, i = 0, . . . , 3 satisfy the condition
3∑

i=0

θi = 1. The service times are indepen-

dent and distributed with arbitrary distribution {si}∞i=1, and generating function (GF)

S(x) =
∞∑

i=1

six
i, 0 ≤ x ≤ 1. Hence, si is the probability that a service lasts i slots.

We will denote by Sk =
∞∑

i=k

si , the probability that the service lasts not less than k

slots.

3 TheMarkov chain

At time m+, the system can be described by the Markov process {Xm , m ∈ N} with
Xm = (Cm, ξm, Nm) where Cm denotes the state of the server 0, or 1 according to
whether the server is free or busy, and Nm is the number of customers in the queue.
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If Cm = 1, then ξm represents the remaining service time of the customer currently
being served.

It can be shown that {Xm , m ∈ N} is the Markov chain of the queueing system
under consideration, whose states space is

{(0); (1, i, k) : i ≥ 1, k ≥ 0}.
Our first task is to find the stationary distribution:

π0 = lim
m→∞ P [Cm = 0],

π1,i,k = lim
m→∞ P [Cm = 1, ξm = i, Nm = k], i ≥ 1, k ≥ 0.

of the Markov chain {Xm , m ∈ N}.
The Kolmogorov equations for the stationary distribution are

π0 = (ā + aθ3)π0 + (ā + aθ3)π1,1,0 + aθ3

∞∑

i=2

π1,i,0 ⇔

a(1 − θ3)π0 = āπ1,1,0 + aθ3

∞∑

i=1

π1,i,0, (1)

π1,i,k = δ0,ka(1 − θ3)siπ0 + a(1 − θ3)siπ1,1,k + (ā + aθ3)siπ1,1,k+1 +
+ (1 − δ0,k)aθ0π1,i+1,k−1 + āπ1,i+1,k +

+ (1 − δ0,k)aθ1si

∞∑

j=2

π1,j,k−1 + aθ2si

∞∑

j=2

π1,j,k +

+ aθ3si

∞∑

j=2

π1,j,k+1, i ≥ 1, k ≥ 0, (2)

where ā = 1 − a and δi,j denotes the Kronecker’s delta.
The normalization condition is

π0 +
∞∑

i=1

∞∑

k=0

π1,i,k = 1.

With the aim of solving Eqs. 1 and 2, the following generating function is introduced

ϕ1(x, z) =
∞∑

i=1

∞∑

k=0

π1,i,k xizk, 0 ≤ x, z ≤ 1,

and the auxiliary generating functions

ϕ1,i (z) =
∞∑

k=0

π1,i,k zk, 0 ≤ z ≤ 1, i ≥ 1.
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Multiplying Eq. 2 by zk , summing over k and taking into account Eq. 1 yields

ϕ1,i (z) = (ā + aθ0z)ϕ1,i+1(z) + ā + aθ0z + aθ1z(1 − z)

z
siϕ1,1(z) +

+a(θ1z
2 + θ2z + θ3)

z
siϕ1(1, z) − 1 − z

z
a(1 − θ3)siπ0, i ≥ 1. (3)

Next, multiplying the above equation by xi and summing over i gives

z
x − (ā + aθ0z)

x
ϕ1(x, z) = [(ā + aθ0z + aθ1z(1 − z))S(x) − z(ā + aθ0z)]ϕ1,1(z)

+a(θ1z
2 + θ2z + θ3)S(x)ϕ1(1, z)

−(1 − z)a(1 − θ3)S(x)π0. (4)

By letting x = 1 in Eq. 4 it is obtained

a[(θ0 + θ1)z − θ3]ϕ1(1, z) = [ā + az(θ0 + θ1)]ϕ1,1(z) − a(1 − θ3)π0. (5)

Inserting the above equation into (4) gives

[(θ0 + θ1)z − θ3]x − (ā + aθ0z)

x
ϕ1(x, z) =

= [((āaθ0z)(1 − θ3) + θ1z) S(x) − [(θ0 + θ1)z − θ3](ā + aθ0z)]ϕ1,1(z) −
−a(1 − θ3)(1 − θ0z)S(x)π0. (6)

Choosing x = (ā + aθ0z) in Eq. 6 yields

ϕ1,1(z) = a(1 − θ3)(1 − θ0z)S(ā + aθ0z)

D(z)
π0, (7)

where

D(z) = ((ā + aθ0z)(1 − θ3) + θ1z)S(ā + aθ0z) − [(θ0 + θ1)z − θ3](ā + aθ0z).

Finally, by substituting (7) into (6), it is obtained

ϕ1(x, z) = S(x) − S(ā + aθ0z)

x − (ā + aθ0z)
· xa(1 − θ3)(1 − θ0z)(ā + aθ0z)

D(z)
π0. (8)

Using the normalization condition that can be written as π0 + ϕ1(1, 1) = 1, we find
the value of the unknown constant π0:

π0 = D(1)

θ1S(ā + aθ0) + (θ2 + θ3)(ā + aθ0)
, (9)

where

D(1) = [(ā + aθ0)(1 − θ3) + θ1]S(ā + aθ0) − [θ0 + θ1 − θ3](ā + aθ0).

Therefore, the condition

D(1) > 0 (10)

is a necessary condition for the system’s stability. Applying Foster’s theorem, it can
be shown that this condition is also sufficient for the stability of the system. The
above results are summarized in the following theorem



1868 I. Atencia et al.

Theorem 1 If D(1) > 0, the stationary distribution of the Markov chain {Xm , m ∈
N} has the following generating function

ϕ1(x, z) = S(x) − S[(ā + aθ0z)]
x − (ā + aθ0z)

xa(1 − θ0z)(ā + aθ0z)

D(z)
π0,

where

π0 = D(1)

θ1S(ā + aθ0) + θ2(ā + aθ0)
.

Corollary 1 1. The probability generating function of the queue size (i.e., of the
variable N) is given by

�(z) = π0 + ϕ1(1, z)

= θ1zS(ā + aθ0z) + (ā + aθ0z)[1 − z(θ0 + θ1)]
D(z)

π0, 0 ≤ z ≤ 1.

2. The probability generating function of the system size (i.e., of the variable L) is
given by

�(z) = π0 + z ϕ1(1, z)

= [(ā + aθ0z)(1 − z)(1 − θ3) + θ1z]S(ā + aθ0z) + (ā + aθ0z)(θ2z + θ3)

D(z)
π0,

0 ≤ z ≤ 1.

Corollary 2 1. The mean queue size is given by

E[N ] = 1[
θ1S(ā + aθ0) + (θ2 + θ3)(ā + aθ0)

]
D(1)

×

×
{[

θ1

(
S(ā + aθ0) + aθ0S

′(ā + aθ0)
)

+ aθ0(θ2 + θ3) −
−(ā + aθ0)(θ0 + θ1)

]
D(1) −

[
θ1S(ā + aθ0) + (θ2 + θ3)(ā + aθ0)

]
D′(1)

}
,

where

D′(1) = [aθ0(1 − θ3) + θ1]S(ā + aθ0) + [(ā + aθ0)(1 − θ3) + θ1]aθ0S
′(ā + aθ0)

− (θ0 + θ1)(ā + 2aθ0) + aθ0θ3.

2. The mean system size is given by

E[L] = �′(1) = E[N] + 1 − π0.

4 Calculation of the steady-state probabilities

This section is devoted to develop some recursive formulae for calculating the more
characteristics stationary distributions associated with our system.
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Theorem 2 The steady-state distribution of the queue size is given by the following
recursive formulae

ψ0 = P [N = 0] = π0

(1 − θ3)S(ā) + θ3
, (11)

ψk = P [N = k] =
−

k−1∑

n=0

ψngk−n + lkπ0

(1 − θ3)s(ā) + θ3
, k ≥ 1, (12)

where

g1 = ā2c1 + [aθ0(1 − θ3) + θ1]S(ā) − ā(θ0 + θ1)

ā
,

gn = ā2cn + [aθ0(1 − θ3) + θ1]cn−1, n ≥ 2,

l0 = π0,

l1 = θ1S(ā) − ā(θ0 + θ1)

ā
π0,

ln = θ1cn−1π0, n ≥ 2,

and

cn =
∞∑

i=n

(
i

n

)
si+1ā

i−n(aθ0)
n, n ≥ 1.

Proof Let us note that the GF �(z) of the number of customers in the queue satisfies
the relation

�(z)G(z) =
(
1 + z

[
θ1

S(ā + aθ0z)

ā + aθ0z
− (θ0 + θ1)

])
π0, (13)

where

G(z) = [ā(1 − θ3) + (aθ0(1 − θ3) + θ1)z]S(ā + aθ0z)

ā + aθ0z
+ θ3 − (θ0 + θ1)z

=
∞∑

n=0

gnz
n = θ3 + (1 − θ3)S(ā) +

∞∑

n=1

gnz
n, 0 ≤ z ≤ 1.

Using the properties of the generating functions and the Newton’s binomial, we get

S(ā + aθ0z)

ā + aθ0z
= S(ā)

ā
+

∞∑

n=1

cnz
n,

and the expression of the coefficients gn, n ≥ 1 are given by

g1 = ā2(1 − θ3)c1 + [aθ0(1 − θ3) + θ1]S(ā) − ā(θ0 + θ1)

ā
,

gn = ā(1 − θ3)cn + [aθ0(1 − θ3) + θ1]cn−1, n ≥ 2.



1870 I. Atencia et al.

In a similar way, we obtain the expression in power series of the right-hand side of

(11):
∞∑

n=0

lnz
n, where l0 = π0, l1 = θ1S(ā) − ā(θ0 + θ1)

ā
π0, and ln = θ1cn−1π0, n ≥

2.
After comparing the coefficients of zk on both sides in equation (13), we have

ψ0g0 = l0,

k∑

n=0

ψngk−n = lk, k ≥ 1,

relations that directly lead to formulae (11) and (12).

With respect to the steady-state probabilities of the system size, let us note that

φ0 = P [L = 0] = π0,

φ1 = P [L = 1] = ψ0 − φ0, (14)

φk = P [L = k] = ψk−1, k ≥ 2.

5 Busy period

Abusy period (BP) is defined to beginwith the arrival of a customer to an empty system
and to end when the system next becomes empty and no external arrival takes place.

In this paragraph, we will consider the busy period of an auxiliary system that will
be useful to study the customers delay in our initial model. This auxiliary system
differs from the original one by the fact that the probability of an arrival is equal to
aθ , θ = θ1 + θ2 + θ3 = 1 − θ0, and that a customer who enters in the system goes
directly to the server interrupting the service of the customer that is currently being
served, if any. The parameter a is the probability. The interrupted customer may be
displaced to the head of the queue with probability aθ1, or expelled out of the system
with probability aθ2. The arriving customer with probability aθ3 becomes a negative
customer killing the customer that is in the server.

We will denote by hk , k ≥ 0, the probability that the BP lasts exactly k slots. Then,
we have

h0 = 0,

hk = (1 − aθ)k−1sk[1 − a(θ1 + θ2)] + (1 − aθ)k−1Sk+1aθ3

+
k∑

i=1

(1 − aθ)i−1sia(θ1 + θ2)hk−i

+
k∑

i=1

(1 − aθ)i−1Si+1aθ1

k−i∑

j=0

hjhk−i−j

+
k∑

i=1

(1 − aθ)i−1Si+1aθ2hk−i , k ≥ 1. (15)
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The generating function h(x) =
∞∑

k=0

hkx
k, 0 ≤ x ≤ 1, of the BP satisfies the

following relation:

h(x) = 1 − a(θ1 + θ2)

1 − aθ
S[(1 − aθ)x] + aθ3

1 − aθ
· (1 − aθ)x − S[(1 − aθ)x]

1 − (1 − aθ)x

+a(θ1 + θ2)

1 − aθ
· S[(1 − aθ)x]h(x)

+ aθ1

1 − aθ
· (1 − aθ)x − S[(1 − aθ)x]

1 − (1 − aθ)x
h2(x)

+ aθ2

1 − aθ
· (1 − aθ)x − S[(1 − aθ)x]

1 − (1 − aθ)x
h(x). (16)

The above formula can be written as

aθ1[(1 − aθ)x − s[(1 − aθ)x]]h2(x) +
+ [a(θ1 + θ2)[1 − (1 − aθ)x]S[(1 − aθ)x]

+aθ2[(1 − aθ)x − S[(1 − aθ)x]] − (1 − aθ)[1 − (1 − aθ)x]]h(x)

+ [1 − a(θ1 + θ2)][1 − (1 − aθ)x]S[[(1 − aθ)x]]
+ aθ3[(1 − aθ)x − S[(1 − aθ)x]] = 0. (17)

Therefore, the generating function h = h(x) satisfies the quadratic equation

f (h) = 0 (18)

where

f (h) = aθ1[(1 − aθ)x − s[(1 − aθ)x]] h2

+ [a(θ1 + θ2)[1 − (1 − aθ)x]S[(1 − aθ)x]
+aθ2[(1 − aθ)x − S[(1 − aθ)x]] − (1 − aθ)[1 − (1 − aθ)x]] h

+ [1 − a(θ1 + θ2)][1 − (1 − aθ)x]S[[(1 − aθ)x]]
+ aθ3[(1 − aθ)x − S[(1 − aθ)x]]. (19)

Let us note that for any x ∈ (0, 1),

aθ1[(1 − aθ)x − S[(1 − aθ)x]] > 0

f (0) = [1 − a(θ1 + θ2)][1 − (1 − aθ)x]S[(1 − aθ)x]
+aθ3[(1 − aθ)x − S[(1 − aθ)x]] > 0, (20)

and
f (1) = (1 − aθ)(x − 1)[1 − S[(1 − aθ)x]] < 0. (21)

The above inequalities show that for any x ∈ (0, 1), the equation (19) has two solutions,
h(x) and h∗(x) satisfying the inequalities 0 < h(x) < 1 < h∗(x), and given by

h(x) = −b(x) − [b2(x) − 4a(x)c(x)]1/2
2a(x)

,

h∗(x) = −b(x) + [b2(x) − 4a(x)c(x)]1/2
2a(x)

,
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where

a(x) = aθ1[(1 − aθ)x − S[(1 − aθ)x]],
b(x) = [a(θ1 + θ2)[1 − (1 − aθ)x]S[(1 − aθ)x],

+aθ2[(1 − aθ)x − S[(1 − aθ)x]] − (1 − aθ)[1 − (1 − aθ)x]],
c(x) = [1 − a(θ1 + θ2)][1 − (1 − aθ)x]S[[(1 − aθ)x]]

+ aθ3[(1 − aθ)x − S[(1 − aθ)x]]. (22)

For x = 1 is f (1) = 0, which means that at least one of the two solutions h(x) or
h∗(x) takes the value 1 for x = 1. Let us observe that the inequality h∗(x) > 1 holds
if and only if

[b2(1) − 4a(1)c(1)]1/2 > 2a(1) + b(1)

= (1 − aθ)(θ1 − θ3) − [θ1 + (θ1 + θ2)(1 − aθ)]S(1 − aθ).

If the stability condition is fulfilled, the right-hand side of the above inequality is
negative, and then h∗(1) > 1. Consequently h(1) = 1, and the generating function
of the BP is h(x).
The mean length of the BP is given by

h̄ = h′(1) = (1 − aθ)[1 − S(1 − aθ)]
a[[θ1 + (θ1 + θ2)(1 − aθ)]S(1 − aθ) − (1 − aθ)(θ1 − θ3)] . (23)

In order to find the generating function of the time that a customer spends in the
queue, we need to consider the the GF h(x; m) of the BP that starts with a customer
to which remains m slots to finish its service. This GF h(x; m) is given by

h(x; m) = [(1 − aθ)x]m
1 − aθ

[1 − a(θ1 + θ2) + a(θ1 + θ2)h(x)]

+ x
1 − [(1 − aθ)x]m−1

1 − (1 − aθ)x
[aθ1h

2(x) + aθ2h(x) + aθ3]. (24)

Let us explain the above formula:
If after the first m − 1 slots no customers have arrived to the system (with prob-

ability (1 − aθ)m−1), then the BP ends with probability 1 − a(θ1 + θ2), or if in the
slot m a non-negative new customer arrives (with probability a(θ1 + θ2), a new BP is
opened with GF h(x).

If after i − 1 slots, i = 1, . . . , m − 1 no customers have arrived to the system
(with probability (1 − aθ)i−1) and in the slot i: a new customer arrives, then

– With probability aθ1, two BP area added with GF h(x) · h(x), one is opened by
the new customer and the other is opened by the displaced customer to the head
of the queue,

– With probability aθ2, a BP is opened with GF h(x).
– With probability aθ3, the BP ends,

summing over i from 1 to m − 1 the given formula of h(x; m) is obtained.
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Let us note that the above expression of h(x; m) can be written as

h(x; m) = 1

(1 − aθ)[1 − (1 − aθ)x]
[[(1 − aθ)]m([1 − (1 − aθ)x][1 − a(θ1 + θ2) + a(θ1 + θ2)h(x)]
−[aθ1h

2(x) + aθ2h(x) + aθ3])
+ (1 − aθ)x[aθ1]h2(x) + aθ2h(x) + aθ3

]
. (25)

6 Sojourn times

6.1 Sojourn time of a customer in the server

In this section, we will find the distribution of the time that a customer spends in the
server. We will denote by bk the probability that the sojourn time of a customer in the
server (taking into account possible interruptions) last exactly k slots.

The distribution {bk, k ≥ 0} is governed by the following recursive formulae:

b0 = 0,

bk = (ā + aθ0)
k−1sk + (ā + aθ0)

k−1Sk+1a(θ2 + θ3) +

+
k∑

i=1

(ā + aθ0)
i−1Si+1aθ1bk−i , k ≥ 1.

The GF b(x) =
∞∑

k=0

bkx
k is given by

b(x) = 1

ā + aθ0
S[(ā + aθ0)x] + a(θ2 + θ3)

ā + aθ0
·

(ā + aθ0)x − S[(ā + aθ0)x]
1 − (ā + aθ0)x

+ (26)

aθ1

ā + aθ0

(ā + aθ0)x − S[(ā + aθ0)x]
1 − (ā + aθ0)x

b(x),

that is

b(x)= [1 − (ā + aθ0)x]S[(ā + aθ0)x] + a(θ2 + θ3)[(ā + aθ0)x − S[(ā + aθ0)x]]
(ā + aθ0)[1 − (ā + aθ0)x] − aθ1[(ā + aθ0)x − S[(ā + aθ0)x]] ,

and the corresponding time is given by

b̄ = b′(1) = (ā + aθ0)[1 − S(ā + aθ0)]
a[θ1S(ā + aθ0) + (ā + aθ0)(θ2 + θ3)] .

Let us note that the stability condition (10) can be written as

ρ = a(1 − θ3)b̄ < 1.
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6.2 Sojourn time of a customer in the system

Firstly, we will find the distribution of the period of time that a customer spends in
the system from the beginning of its service until the moment of its departure.
Let gk be the probability that this period of time lasts exactly k slots. Then, we have

g0 = 0,

gk = (ā + aθ0)
k−1sk + (ā + aθ0)

k−1a(θ2 + θ3)Sk+1 (27)

+
k∑

i=1

(ā + aθ0)
i−1Si+1aθ1

k−i∑

j=0

hjgk−i−j , k ≥ 1.

The GF g(x) =
∞∑

k=0

gkx
k, 0 ≤ x ≤ 1, is given by

g(x) = 1

ā + aθ0
S[(ā + aθ0)x] + a(θ2 + θ3)

ā + aθ0
· (ā + aθ0)x − S[(ā + aθ0)x]

1 − (ā + aθ0)x

+ aθ1

ā + aθ0
· (ā + aθ0)x − S[(ā + aθ0)x]

1 − (ā + aθ0)x
h(x)g(x),

that is

g(x)= [1 − (ā + aθ0)x]S[(ā + aθ0)x] + a(θ2 + θ3)[(ā + aθ0)x − S[(ā + aθ0)x]]
(ā + aθ0)[1 − (ā + aθ0)x] − aθ1h(x)[(ā + aθ0)x − S[(ā + aθ0)x]] ,

and the corresponding mean time is given by

ḡ = g′(1) = (ā + aθ0)[1 − S(ā + aθ0)] + aθ1h̄[(ā + aθ0) − S(ā + aθ0)]
a[θ1S(ā + aθ0) + (ā + aθ0)(θ2 + θ3)] .

Let us observe that if θ1 = 0, then g(x) = b(x).

6.2.1 Sojourn time of a customer in the queue

The stationary distribution of the sojourn time that a customer spends in the queue
until the beginning of its service has the following GF:

w(x) = π0 + ϕ1,1(1) + (1 − θ0)

∞∑

i=1

∞∑

k=0

π1,i+1,k + θ0

∞∑

i=1

∞∑

k=0

π1,i+1,kh(x; i)h(x)k,

0 ≤ x ≤ 1.

From (25) and using the GF’s introduced in Section 3, the above formula becomes

w(x) = π0 + θ0ϕ1,1 + (1 − θ0)ϕ1(1, 1) + θ0

[
F1(x)

ϕ1[(1 − aθ)x, h(x)]
(1 − aθ)x

+F2(x)ϕ1(1, h(x)) − [F1(x) + F2(x)]ϕ1,1(h(x))
]
,
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where

F1(x) = 1

(1 − aθ)[1−(1−aθ)x]
[
[1−(1−aθ)x[1−a(θ+θ2)] + a(θ1+θ2)h(x)]

−[aθ1h
2(x) + aθ2h(x) + aθ3]

]
,

F2(x) = x

1 − (1 − aθ)x

[
aθ1h

2(x) + aθ2h(x) + aθ3

]
.

The corresponding mean time is given by

w̄ = w′(1) = θ0

[
F ′
1(1)

ϕ1[1 − aθ, 1]
1 − aθ

+ F ′
2(1)ϕ1(1, 1) + ϕ′

1(1, h(x))|x=1

−(F ′
1(1) + F ′

2(1))ϕ1,1(1) − ϕ′
1,1(h(x))|x=1

]
,

where

F ′
1(1) = − 1

aθ(1 − aθ)

[
1 − aθ + ah̄[a(θ1 + θ2)(1 − aθ) + θ1]

]
,

F ′
2(1) = 1 + ah̄[2θ1 + θ2]

aθ
,

ϕ1[1 − aθ, 1] = S′(1 − aθ)
a(1 − aθ)(1 − θ0)(1 − θ3)

θ1S(1 − aθ) + (θ2 + θ3)(1 − aθ)
,

ϕ′
1(1, h(x))|x=1 = 1 − S(1 − aθ) − (1 − aθ)S′(1 − aθ)

D(1)
[
θ1S(1 − aθ) + (θ2 + θ3)(1 − aθ)

] a2θ0(1 − θ3)h̄,

ϕ′
1,1(h(x))|x=1 =

θ0

[
a(1 − θ0)S

′(1 − aθ) − S(1 − aθ)
]
D(1) − (1 − θ0)S(1 − aθ)D′(1)

D(1)
[
θ1S(1 − aθ) + (θ2 + θ3)(1 − aθ)

]

· a(1 − θ3)h̄.

The total time that a customer spends in the queue is given by

W̄ = w̄ + ḡ − b̄.

Finally, the GF v(x), 0 ≤ x ≤ 1, of the stationary distribution of the sojourn time
of a customer in the system is given by

v(x) = w(x) g(x),

and the mean sojourn time of a customer in the system is given by

v̄ = v′(1) = w̄ + ḡ.

7 Numerical results

In this section, we present some numerical results to illustrate the effect of varying
parameters on the main performance measures of our system.

In the following figures and tables, we suppose that the service times take exactly
two slots.
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Fig. 2 Probability of an empty system against θ0 for a = 0.4, θ1 = 0

In Fig. 2, the probability that the system is empty is plotted versus the parameter
θ0. We have presented three curves which correspond to θ3 = 0.2 0.4 0.6 respectively.
As we expect, the probability that the system is empty decreases with increasing
values of the parameter θ0 and increases with increasing values of the θ3.

In Fig. 3, we illustrate the behavior of E[N] as a function of θ0. As intuition tells
us, E[N] increases when θ0 increases and θ3 decreases.

Fig. 3 The mean number of customers in the queue against θ0 for a = 0.5, θ1 = 0
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Table 1 for a = 0.4, θ1 = 0
θ0 = 0 θ0 = 0.3 θ0 = 0.6 θ0 = 1

ψ0 1 0.866666 0.733333 0.555555

ψ1 0 0.115555 0.195555 0.246913

ψ2 0 0.015407 0.052148 0.109739

ψ3 0 0.002054 0.013906 0.048773

ψ4 0 0.000274 0.003708 0.021677

ψ5 0 0.000037 0.000989 0.009634

ψ6 0 0.000005 0.000264 0.004282

ψ7 0 0.000001 0.000070 0.001903

ψ8 0 0 0.000019 0.000846

Table 2 For a = 0.4, θ1 = 0
θ0 = 0 θ0 = 0.3 θ0 = 0.6 θ0 = 1

φ0 0.36 0.312 0.264 0.2

φ1 0.64 0.554666 0.469333 0.355555

φ2 0 0.115555 0.195555 0.246913

φ3 0 0.015407 0.052148 0.109739

φ4 0 0.002054 0.013906 0.048773

φ5 0 0.000274 0.003708 0.021677

φ6 0 0.000037 0.000989 0.009634

φ7 0 0.000005 0.000264 0.004282

φ8 0 0.000001 0.000070 0.001903

Table 3 For a = 0.4, θ0 = 0
θ1 = 0 θ1 = 0.3 θ1 = 0.6 θ1 = 0.8

ψ0 1 0.757575 0.438596 0.163398

ψ1 0 0.161616 0.187134 0.092955

ψ2 0 0.053872 0.124754 0.082626

ψ3 0 0.017957 0.083169 0.073445

ψ4 0 0.005985 0.055446 0.065284

ψ5 0 0.001995 0.036964 0.058030

ψ6 0 0.000665 0.024642 0.051582

ψ7 0 0.000221 0.016428 0.045851

ψ8 0 0.000073 0.010952 0.040756
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Table 4 For a = 0.4, θ0 = 0
θ1 = 0 θ1 = 0.3 θ1 = 0.6 θ1 = 0.8

φ0 0.36 0.272727 0.157894 0.058823

φ1 0.64 0.484853 0.280701 0.104575

φ2 0 0.161616 0.187134 0.092955

φ3 0 0.053872 0.124754 0.082626

φ4 0 0.017957 0.083169 0.073445

φ5 0 0.005985 0.055446 0.065284

φ6 0 0.001995 0.036964 0.058030

φ7 0 0.000665 0.024642 0.051582

φ8 0 0.000221 0.016428 0.045851

An important feature of this work is in the recursion scheme provided by Theorem
1 and 2. The formulae (11), (12) and (14) have been implemented in Tables 1, 2, 3
and 4 for:

8 Conclusions

In this paper, a discrete-time queueing system in which the arriving customers may
opt to choose several strategies is studied. These different strategies give to the
considered model a wide versatility which allows to include special cases of interest.

A thorough analysis of the system has been carried out obtaining the generating
functions of the number of customers in the queue and in the system and its expected
values.

The recursive algorithm provided by theorems 2 and 3 for calculating the steady-
state probabilities of the number of customers in the queue and in the system is an
important feature of this paper. The busy period of an auxiliary system useful to study
the customer’s delay has been studied.

The analysis carried out to obtain the distribution of the sojourn time that a
customer spends in the queue and in the system constitutes an important research
contribution of the paper. Finally, tables and graphics that illustrate the effect of the
parameters on several performance characteristics are provided.
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