Skip to main content

Advertisement

Log in

The Effect of Mitochondrial DNA Half-Life on Deletion Mutation Proliferation in Long Lived Cells

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The proliferation of mitochondrial DNA (mtDNA) with deletion mutations has been linked to aging and age related neurodegenerative conditions. In this study we model the effect of mtDNA half-life on mtDNA competition and selection. It has been proposed that mutation deletions (\(\text {mtDNA}_{del}\)) have a replicative advantage over wild-type (\(\text {mtDNA}_{wild}\)) and that this is detrimental to the host cell, especially in post-mitotic cells. An individual cell can be viewed as forming a closed ecosystem containing a large population of independently replicating mtDNA. Within this enclosed environment a selfishly replicating \(\text {mtDNA}_{del}\) would compete with the \(\text {mtDNA}_{wild}\) for space and resources to the detriment of the host cell. In this paper, we use a computer simulation to model cell survival in an environment where \(\text {mtDNA}_{wild}\) compete with \(\text {mtDNA}_{del}\) such that the cell expires upon \(\text {mtDNA}_{wild}\) extinction. We focus on the survival time for long lived post-mitotic cells, such as neurons. We confirm previous observations that \(\text {mtDNA}_{del}\) do have a replicative advantage over \(\text {mtDNA}_{wild}\). As expected, cell survival times diminished with increased mutation probabilities, however, the relationship between survival time and mutation rate was non-linear, that is, a ten-fold increase in mutation probability only halved the survival time. The results of our model also showed that a modest increase in half-life had a profound affect on extending cell survival time, thereby, mitigating the replicative advantage of \(\text {mtDNA}_{del}\). Given the relevance of mitochondrial dysfunction to various neurodegenerative conditions, we propose that therapies to increase mtDNA half-life could significantly delay their onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Simulation code available: git clone https://agholt@bitbucket.org/agholt/mitosim.git.

  2. The Kaplan–Meier function also yields a median value.

References

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus 29(3):380–395

    Google Scholar 

  • Agaronyan K, Morozov YI, Anikin M, Temiakov D (2015) Mitochondrial biology. Replication-transcription switch in human mitochondria. Science 347(6221):548–551

    Google Scholar 

  • Alberts B (2017) Molecular biology of the cell. Garland Science, New York

  • Alexeyev M, Shokolenko I, Wilson G, LeDoux S (2013) The maintenance of mitochondrial DNA integrity-critical analysis and update. Cold Spring Harb Perspect Biol 5(5):a012641–a012641

    Article  Google Scholar 

  • Ameur A, Stewart JB, Freyer C, Hagström E, Ingman M, Larsson NG, Gyllensten U (2011) Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 7(3):e1002028

    Article  Google Scholar 

  • Anderson AP, Luo X, Russell W, Yin YW (2020) Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. Nucleic Acids Res 48(2):817–829

    Article  Google Scholar 

  • Baron M (2010) Copy number variations of the mitochondrial DNA as potential cause of mitochondrial diseases. PhD thesis

  • Beazley DM (2009) Python essential reference, 4th edn. Addison-Wesley Professional, Indianapolis

  • Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38(5):515–517

    Article  Google Scholar 

  • Berg OG, Kurland CG (2000) Why mitochondrial genes are most often found in nuclei. Mol Biol Evol 17(6):951–961

    Article  Google Scholar 

  • Björkholm P, Harish A, Hagström E, Ernst AM, Andersson SGE (2015) Mitochondrial genomes are retained by selective constraints on protein targeting. Proc Natl Acad Sci USA 112(33):10154–10161

    Article  Google Scholar 

  • Bonekamp NA, Larsson NG (2018) SnapShot: mitochondrial nucleoid. Cell 172(1–2):388–388.e1

    Article  Google Scholar 

  • Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128(3):617–630

    Article  Google Scholar 

  • Busch KB, Kowald A, Spelbrink JN (2014) Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc B 369(1646):20130442

    Article  Google Scholar 

  • Cedikova M, Pitule P, Kripnerova M, Markova M, Kuncova J (2016) Multiple roles of mitochondria in aging processes. Physiol Res 65(Supplementum 5):S519–S531

  • Chan SW, Chevalier S, Aprikian A (2013) Chen JZ (2013) Simultaneous quantification of mitochondrial DNA damage and copy number in circulating blood: a sensitive approach to systemic oxidative stress. BioMed Res Int 2013(1):1–10

    Google Scholar 

  • Colchero F, Rau R, Jones OR, Barthold JA, Conde DA, Lenart A, Nemeth L, Scheuerlein A, Schoeley J, Torres C, Zarulli V, Altmann J, Brockman DK, Bronikowski AM, Fedigan LM, Pusey AE, Stoinski TS, Strier KB, Baudisch A, Alberts SC, Vaupel JW (2016) The emergence of longevous populations. Proc Natl Acad Sci USA 113(48):E7681–E7690

    Article  Google Scholar 

  • da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T (2016) A synopsis on aging–theories, mechanisms and future prospects. Ageing Res Rev 29:90–112

    Article  Google Scholar 

  • Davies AM, Holt AG (2018) Why antioxidant therapies have failed in clinical trials. J Theor Biol 457:1–5

    Article  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • D’Erchia AM, Atlante A, Gadaleta G, Pavesi G, Chiara M, De Virgilio C, Manzari C, Mastropasqua F, Prazzoli GM, Picardi E, Gissi C, Horner D, Reyes A, Sbisà E, Tullo A, Pesole G (2015) Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion 20:13–21

    Article  Google Scholar 

  • de Grey ADNJ (1999) The mitochondrial free radical theory of aging. R.G. Landes, Austin

    Google Scholar 

  • Dölle C, Flønes I, Nido GS, Miletic H, Osuagwu N, Kristoffersen S, Lilleng PK, Larsen JP, Tysnes OB, Haugarvoll K, Bindoff LA, Tzoulis C (2016) Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun 7:13548

    Article  Google Scholar 

  • Duan M, Tu J, Lu Z (2018) Recent advances in detecting mitochondrial DNA heteroplasmic variations. Molecules (Basel, Switzerland) 23(2):323

    Article  Google Scholar 

  • Falkenberg M (2018) Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem 62(3):287–296

    Article  Google Scholar 

  • Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan–Meier estimate. Int J Ayurveda Res 1:274–278

  • Grimm A, Eckert A (2017) Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem 143(4):418–431

    Article  Google Scholar 

  • Gross NJ, Getz GS, Rabinowitz M (1969) Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J Biol Chem 244(6):1552–1562

  • Gu G, Reyes PF, Golden GT, Woltjer RL, Hulette C, Montine TJ, Zhang J (2002) Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 61(7):634–639

    Article  Google Scholar 

  • Guttmann CR, Jolesz FA, Kikinis R, Killiany RJ, Moss MB, Sandor T, Albert MS (1998) White matter changes with normal aging. Neurology 50(4):972–978

    Article  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  Google Scholar 

  • Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5(5):557–561

    Article  Google Scholar 

  • Hayakawa M, Hattori K, Sugiyama S, Ozawa T (1992) Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 189(2):979–985

    Article  Google Scholar 

  • Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719

    Article  Google Scholar 

  • Holt IJ, Speijer D, Kirkwood TBL (2014) The road to rack and ruin: selecting deleterious mitochondrial DNA variants. Philos Trans R Soc B 369(1646):20130451

    Article  Google Scholar 

  • Jang JY, Blum A, Liu J, Finkel T (2018) The role of mitochondria in aging. J Clin Invest 128(9):3662–3670

    Article  Google Scholar 

  • Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84

    Article  Google Scholar 

  • Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604(2):77–94

    Article  Google Scholar 

  • Kai Y, Takamatsu C, Tokuda K, Okamoto M, Irita K, Takahashi S (2006) Rapid and random turnover of mitochondrial DNA in rat hepatocytes of primary culture. Mitochondrion 6(6):299–304

    Article  Google Scholar 

  • Kauppila JHK, Stewart JB (2015) Mitochondrial DNA: radically free of free-radical driven mutations. Biochim Biophys Acta 1847(11):1354–1361

    Article  Google Scholar 

  • Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian mitochondria and aging: an update. Cell Metabol 25(1):57–71

    Article  Google Scholar 

  • Khrapko K, Turnbull D (2014) Mitochondrial DNA mutations in aging, vol 127, 1st edn. Elsevier Inc., Amsterdam

  • Khrapko K, Bodyak N, Thilly WG, van Orsouw NJ, Zhang X, Coller HA, Perls TT, Upton M, Vijg J, Wei JY (1999) Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. Nucleic Acids Res 27(11):2434–2441

    Article  Google Scholar 

  • Korr H, Kurz C, Seidler TO, Sommer D, Schmitz C (1998) Mitochondrial DNA synthesis studied autoradiographically in various cell types in vivo. Braz J Med Biol Res 31(2):289–298

    Article  Google Scholar 

  • Kowald A, Kirkwood TB (1996) A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat Res 316(5–6):209–236

    Article  Google Scholar 

  • Kowald A, Kirkwood T (2018) Resolving the enigma of the clonal expansion of mtDNA deletions. Genes 9(3):126

    Article  Google Scholar 

  • Kowald A, Dawson M, Kirkwood TBL (2014) Mitochondrial mutations and ageing: can mitochondrial deletion mutants accumulate via a size based replication advantage? J Theor Biol 340:111–118

    Article  Google Scholar 

  • Lagerwaard B, Keijer J, McCully KK, de Boer VCJ, Nieuwenhuizen AG (2019) In vivo assessment of muscle mitochondrial function in healthy, young males in relation to parameters of aerobic fitness. Eur J Appl Physiol 119(8):1799–1808

    Article  Google Scholar 

  • Lakshmanan LN, Yee Z, Ng LF, Gunawan R, Halliwell B, Gruber J (2018) Clonal expansion of mitochondrial dna deletions is a private mechanism of ageing in long-lived animals. Aging Cell Oct 17(5): e12814

  • Lujan SA, Longley MJ, Humble MH, Lavender CA, Burkholder A, Blakely EL, Alston CL, Gorman GS, Turnbull DM, McFarland R, Taylor RW, Kunkel TA, Copeland WC (2020) Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biol 21(1):248

    Article  Google Scholar 

  • Menzies RA, Gold PH (1971) The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 246(8):2425–2429

    Article  Google Scholar 

  • Nakada K, Inoue K, Ono T, Isobe K, Ogura A, Goto YI, Nonaka I, Hayashi JI (2001) Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Rev Neurosci 7(8):934–940

    Google Scholar 

  • Nakada K, Sato A, Hayashi JI (2009) Mitochondrial functional complementation in mitochondrial DNA-based diseases. Int J Biochem Cell Biol 41(10):1907–1913

    Article  Google Scholar 

  • Nido GS, Dölle C, Flønes I, Tuppen HA, Alves G, Tysnes OB, Haugarvoll K, Tzoulis C (2018) Ultradeep mapping of neuronal mitochondrial deletions in Parkinson’s disease. Neurobiol Aging 63:120–127

    Article  Google Scholar 

  • Nissanka N, Moraes CT (2018) Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 592(5):728–742

    Article  Google Scholar 

  • Phillips NR, Simpkins JW, Roby RK (2013) Mitochondrial DNA deletions in Alzheimer’s brains: a review. Alzheimer’s Dement 10(3):393–400

    Article  Google Scholar 

  • Pinto M, Moraes CT (2014) Mitochondrial genome changes and neurodegenerative diseases. Biochim Biophys Acta 1842(8):1198–1207

  • Poovathingal SK, Gruber J, Lakshmanan L, Halliwell B, Gunawan R (2012) Is mitochondrial DNA turnover slower than commonly assumed? Biogerontology 13(5):557–564

    Article  Google Scholar 

  • Race HL, Herrmann RG, Martin W (1999) Why have organelles retained genomes? Trends Genet 15(9):364–370

    Article  Google Scholar 

  • Rice AC, Keeney PM, Algarzae NK, Ladd AC, Thomas RR, Bennett JP (2020) Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer’s disease hippocampi. J Alzheimer’s Dis 40(2):319–330

    Article  Google Scholar 

  • Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136(3):507–513

    Article  Google Scholar 

  • Sadakierska-Chudy A, Kotarska A, Frankowska M, Jastrzębska J, Wydra K, Miszkiel J, Przegaliński E, Filip M (2016) The alterations in mitochondrial DNA copy number and nuclear-encoded mitochondrial genes in rat brain structures after cocaine self-administration. Mol Neurobiol 54(9):7460–7470

    Article  Google Scholar 

  • Santos RX, Correia SC, Zhu X, Smith MA, Moreira PI, Castellani RJ, Nunomura A, Perry G (2013) Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease. Antioxid Redox Signal 18(18):2444–2457

    Article  Google Scholar 

  • Sanz A, Stefanatos RKA (2008) The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 1(1):10–21

    Article  Google Scholar 

  • Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61(5):654–666

    Article  Google Scholar 

  • Szczepanowska K, Trifunovic A (2017) Origins of mtDNA mutations in ageing. Essays Biochem 61(3):325–337

    Article  Google Scholar 

  • Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410(2):103–123

    Article  Google Scholar 

  • Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS, Prolla TA, Loeb LA (2008) DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40(4):392–394

    Article  Google Scholar 

  • Wallace A (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256(5057):628–632

    Article  Google Scholar 

  • Wallace A (2016) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212

    Article  Google Scholar 

  • Wallace A, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884):1427–1430

    Article  Google Scholar 

  • Webb M, Sideris DP (2020) Intimate relations-mitochondria and ageing. Int J Mol Sci 21(20):7580

    Article  Google Scholar 

  • Wei YH, Lu CY, Lee HC, Pang CY, Ma YS (1998) Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann N Y Acad Sci 854:155–170

    Article  Google Scholar 

  • Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817(10):1833–1838

    Article  Google Scholar 

  • Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Chi-Yu Huang and Dr Daniel Ives for their valuable feedback and the reviewers for their constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian M. Davies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 Markov Model for Half-Life

In this appendix, we present a Markov model to derive a value of \(P_{damage}\) that yields a given half-life. The model comprises a series of states where each state represents the \(m_{ttl} = n\) value of the mtDNA. The Markov model transitions from state n to state \(n-1\) with a probability of \(p=P_{damage}\). Consequently, the mtDNA remains in the same state (that is, \(m_{ttl}\) is unaffected) with probability \(1 - p\), The transition probability matrix \(\mathbf {P}\) for \(maxTTL = 10\) is given by:

(5)

The initial state \(\pi ^0\) is:

(6)

We demonstrate the Markov model by computing the mutation probability for a half life of 10 days. Given that the iteration interval is 15 min, then 10 days is 960 intervals (\(24 \times 4 \times 10\)). We ran the Markov model for various values of p until we achieved result close to:

(7)

When \(\pi [0]^{960} \approx 0.5\), approximately half of the mtDNAs have expired as they have a TTL value \(m_{ttl}=0\). Similarly, approximately half of the population is still alive, that is, \(m_{ttl} > 0\): We found \(p=0.0101\) yielded a half life of 10 days.

Appendix B

2.1 Simulation Pseudocode

This appendix contains the pseudocode for the simulator. Table 4 describes the data structures and functions used in the pseudocode.

figure a
figure b
figure c
figure d
figure e
Table 4 Simulation data structures and Functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holt, A.G., Davies, A.M. The Effect of Mitochondrial DNA Half-Life on Deletion Mutation Proliferation in Long Lived Cells. Acta Biotheor 69, 671–695 (2021). https://doi.org/10.1007/s10441-021-09417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-021-09417-z

Keywords

Navigation