Skip to main content

Advertisement

Log in

Density-Dependent Material and Failure Criteria Equations Highly Affect the Accuracy and Precision of QCT/FEA-Based Predictions of Osteoporotic Vertebral Fracture Properties

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

About 700,000 vertebral fractures occur in the US as a result of bone loss. Quantitative computed tomography (QCT)-based finite element analysis (FEA) is a promising tool for fracture risk prediction that is becoming attractive in the clinical setting. The goals of this study were (1) to perform individual and pooled specimen optimization using inverse QCT/FEA modeling to obtain ash density-elastic modulus equations incorporating the whole vertebral body and accounting for all variables used during FE modeling, and (2) to determine the effect of material equations and failure criteria on the accuracy and precision of mechanical properties. Fifty-four (54) human vertebrae were used to optimize material equations based on experimental outcomes and, together with a previously proposed material equation, were implemented in our models using three different failure criteria to obtain fracture loads. Our robust QCT/FEA approach predicted 78% of the failure loads. Material equations resulted in poor accuracy in the predicted stiffness, yet yielded good precision and, more importantly, strong correlations with fracture loads. Both material and fracture criterion equations are equally important in estimating accurate and precise QCT/FEA predictions. Results suggest that both elastic modulus and fracture criterion equations should be validated against experimental outcomes to better explain the response of the tissue under various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Anderson, D. E., S. Demissie, B. T. Allaire, A. G. Bruno, D. L. Kopperdahl, T. M. Keaveny, D. P. Kiel, and M. L. Bouxsein. The associations between QCT-based vertebral bone measurements and prevalent vertebral fractures depend on the spinal locations of both bone measurement and fracture. Osteoporos. Int. 25:559–566, 2014.

    Article  CAS  Google Scholar 

  2. Bevill, G., S. K. Eswaran, F. Farahmand, and T. M. Keaveny. The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. Bone 44:573–578, 2009.

    Article  Google Scholar 

  3. Buckley, J. M., C. C. Kuo, L. C. Cheng, K. Loo, J. Motherway, C. Slyfield, V. Deviren, and C. Ames. Relative strength of thoracic vertebrae in axial compression versus flexion. Spine J. 9:478–485, 2009.

    Article  Google Scholar 

  4. Buckley, J. M., K. Loo, and J. Motherway. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40:767–774, 2007.

    Article  Google Scholar 

  5. Burkhart, K., B. Allaire, D. E. Anderson, D. Lee, T. M. Keaveny, and M. L. Bouxsein. Effects of long-duration spaceflight on vertebral strength and risk of spine fracture. J. Bone Miner. Res. 35:269–276, 2020.

    Article  CAS  Google Scholar 

  6. Chevalier, Y., D. Pahr, and P. K. Zysset. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body. J. Biomech. Eng. 131:111003, 2009.

    Article  Google Scholar 

  7. Crawford, R. P., C. E. Cann, and T. M. Keaveny. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750, 2003.

    Article  Google Scholar 

  8. Dragomir-Daescu, D., J. Op Den Buijs, S. McEligot, Y. Dai, R. C. Entwistle, C. Salas, L. J. Melton, III, K. E. Bennet, S. Khosla, and S. Amin. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 39:742–755, 2011.

    Article  Google Scholar 

  9. Giambini, H., D. Dragomir-Daescu, P. M. Huddleston, J. J. Camp, K. N. An, and A. Nassr. The effect of quantitative computed tomography acquisition protocols on bone mineral density estimation. J. Biomech. Eng. 137:114502, 2015.

    Article  Google Scholar 

  10. Giambini, H., D. Dragomir-Daescu, A. Nassr, M. J. Yaszemski, and C. Zhao. Quantitative computed tomography protocols affect material mapping and quantitative computed tomography-based finite-element analysis predicted stiffness. J. Biomech. Eng. 138(9):0910031–0910037, 2016.

    Article  Google Scholar 

  11. Giambini, H., Z. Fang, H. Zeng, J. J. Camp, M. J. Yaszemski, and L. Lu. Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation. Tissue Eng. Part C Methods 22:717–724, 2016.

    Article  CAS  Google Scholar 

  12. Giambini, H., S. Khosla, A. Nassr, C. Zhao, and K. N. An. Longitudinal changes in lumbar bone mineral density distribution may increase the risk of wedge fractures. Clin. Biomech. (Bristol, Avon) 28:10–14, 2013.

    Article  Google Scholar 

  13. Giambini, H., X. Qin, D. Dragomir-Daescu, K. N. An, and A. Nassr. Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method. Med. Biol. Eng. Comput. 54:583–593, 2016.

    Article  Google Scholar 

  14. Groenen, K. H. J., T. Bitter, T. C. G. van Veluwen, Y. M. van der Linden, N. Verdonschot, E. Tanck, and D. Janssen. Case-specific non-linear finite element models to predict failure behavior in two functional spinal units. J. Orthop. Res. 36:3208–3218, 2018.

    Article  Google Scholar 

  15. Hardisty, M., L. Gordon, P. Agarwal, T. Skrinskas, and C. Whyne. Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method. Med. Phys. 34:3127–3134, 2007.

    Article  CAS  Google Scholar 

  16. Hipp, J. A., D. S. Springfield, and W. C. Hayes. Predicting pathologic fracture risk in the management of metastatic bone defects. Clin. Orthop. Relat. Res. 312:120–135, 1995.

    Google Scholar 

  17. Homminga, J., B. Van-Rietbergen, E. M. Lochmuller, H. Weinans, F. Eckstein, and R. Huiskes. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34:510–516, 2004.

    Article  CAS  Google Scholar 

  18. Homminga, J., H. Weinans, W. Gowin, D. Felsenberg, and R. Huiskes. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine (Phila Pa 1976) 26:1555–1561, 2001.

    Article  CAS  Google Scholar 

  19. Imai, K., I. Ohnishi, S. Yamamoto, and K. Nakamura. In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model. Spine (Phila Pa 1976) 33:27–32, 2008.

    Article  Google Scholar 

  20. Jackman, T. M., A. M. DelMonaco, and E. F. Morgan. Accuracy of finite element analyses of CT scans in predictions of vertebral failure patterns under axial compression and anterior flexion. J. Biomech. 49:267–275, 2016.

    Article  Google Scholar 

  21. Kaplan, P. A., D. F. Orton, and R. J. Asleson. Osteoporosis with vertebral compression fractures, retropulsed fragments, and neurologic compromise. Radiology 165:533–535, 1987.

    Article  CAS  Google Scholar 

  22. Kopperdahl, D. L., E. F. Morgan, and T. M. Keaveny. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J. Orthop. Res. 20:801–805, 2002.

    Article  Google Scholar 

  23. Maldonado, F. J., B. F. Al Bawardy, A. K. Nehra, Y. S. Lee, D. H. Bruining, M. C. Adkins, T. M. Keaveny, M. P. Johnson, J. L. Fidler, C. H. McCollough, and J. G. Fletcher. Findings of CT-derived bone strength assessment in inflammatory bowel disease patients undergoing CT enterography in clinical practice. Inflamm. Bowel Dis. 25(6):1072–1079, 2018.

    Article  Google Scholar 

  24. Matsumoto, T., I. Ohnishi, M. Bessho, K. Imai, S. Ohashi, and K. Nakamura. Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method. Spine (Phila Pa 1976) 34:1464–1469, 2009.

    Article  Google Scholar 

  25. Matsuura, Y., H. Giambini, Y. Ogawa, Z. Fang, A. R. Thoreson, M. J. Yaszemski, L. Lu, and K. N. An. Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine (Phila Pa 1976) 39:E1291–1296, 2014.

    Article  CAS  Google Scholar 

  26. Morgan, E. F., H. H. Bayraktar, and T. M. Keaveny. Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36:897–904, 2003.

    Article  Google Scholar 

  27. Oppenheimer-Velez, M. L., H. Giambini, A. Rezaei, J. J. Camp, S. Khosla, and L. Lu. The trabecular effect: A population-based longitudinal study on age and sex differences in bone mineral density and vertebral load bearing capacity. Clin. Biomech. (Bristol, Avon) 55:73–78, 2018.

    Article  Google Scholar 

  28. Pisu, M., D. L. Kopperdahl, C. E. Lewis, K. G. Saag, and T. M. Keaveny. Cost-effectiveness of osteoporosis screening using biomechanical computed tomography for patients with a previous abdominal CT. J. Bone Miner. Res. 34(7):1229–1239, 2019.

    Article  Google Scholar 

  29. Saldarriaga, S., S. J. Catano, A. Rezaei, and H. Giambini. Effect of metastatic lesion size and location on the load-bearing capacity of vertebrae using an optimized ash density-modulus equation. Comput. Methods Biomech. Biomed. Eng. 23(10):601–610, 2020.

    Article  Google Scholar 

  30. Seeman, E. Clinical review 137: sexual dimorphism in skeletal size, density, and strength. J. Clin. Endocrinol. Metab. 86:4576–4584, 2001.

    Article  CAS  Google Scholar 

  31. Sisodia, G. B. Methods of predicting vertebral body fractures of the lumbar spine. World J. Orthop. 4:241–247, 2013.

    Article  Google Scholar 

  32. Solitro, G. F., F. Mainnemare, F. Amirouche, and A. Mehta. A novel technique with reduced computed tomography exposure to predict vertebral compression fracture: a finite element study based on rat vertebrae. Med. Biol. Eng. Comput. 57:795–805, 2019.

    Article  Google Scholar 

  33. Sozen, T., L. Ozisik, and N. C. Basaran. An overview and management of osteoporosis. Eur. J. Rheumatol. 4:46–56, 2017.

    Article  Google Scholar 

  34. Stone, K. L., D. G. Seeley, L. Y. Lui, J. A. Cauley, K. Ensrud, W. S. Browner, M. C. Nevitt, S. R. Cummings, and Osteoporotic Fractures Research Group. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J. Bone Miner. Res. 18:1947–1954, 2003.

    Article  Google Scholar 

  35. Tschirhart, C. E., A. Nagpurkar, and C. M. Whyne. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J. Biomech. 37:653–660, 2004.

    Article  Google Scholar 

  36. Whealan, K. M., S. D. Kwak, J. R. Tedrow, K. Inoue, and B. D. Snyder. Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J. Bone Jt. Surg. Am. 82:1240–1251, 2000.

    Article  CAS  Google Scholar 

  37. Wong, C. C., and M. J. McGirt. Vertebral compression fractures: a review of current management and multimodal therapy. J. Multidiscip. Healthc. 6:205–214, 2013.

    PubMed  PubMed Central  Google Scholar 

  38. Wu, Y., and E. F. Morgan. Effect of fabric on the accuracy of computed tomography-based finite element analyses of the vertebra. Biomech. Model. Mechanobiol. 19:505–517, 2020.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the University of Texas at San Antonio. The authors would like to thank the Mayo Clinic x-ray Imaging Core for imaging of the cadaveric spines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Giambini.

Additional information

Associate Editor Joel D Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, M., Rezaei, A. & Giambini, H. Density-Dependent Material and Failure Criteria Equations Highly Affect the Accuracy and Precision of QCT/FEA-Based Predictions of Osteoporotic Vertebral Fracture Properties. Ann Biomed Eng 49, 663–672 (2021). https://doi.org/10.1007/s10439-020-02595-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02595-w

Keywords

Navigation