Skip to main content
Log in

ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties

  • Bioengineering and Enabling Technologies
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stem cell regenerative potential owing to the capacity to self-renew as well as differentiate into other cell types is a promising avenue in regenerative medicine. Stem cell niche not only provides physical scaffolding but also possess instructional capacity as it provides a milieu of biophysical and biochemical cues. Extracellular matrix (ECM) has been identified as a major dictator of stem cell lineage, thus understanding the structure of in vivo ECM pertaining to specific tissue differentiation will aid in devising in vitro strategies to improve the differentiation efficiency. In this review, we summarize details about the native architecture, composition and mechanical properties of in vivo ECM of the early embryonic stages and the later adult stages. Native ECM from adult tissues categorized on their origin from respective germ layers are discussed while engineering techniques employed to facilitate differentiation of stem cells into particular lineages are noted. Overall, we emphasize that in vitro strategies need to integrate tissue specific ECM biophysical cues for developing accurate artificial environments for optimizing stem cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Abuhattum, S., and D. Weihs. Integrative biology ratio of total traction force to projected cell area is preserved in differentiating adipocytes. Integr. Biol. 7:1212–1217, 2015.

    CAS  Google Scholar 

  2. Agmon, G., and K. L. Christman. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr. Opin. Solid State Mater. Sci. 20:193–201, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Agudelo-Garcia, P. A., et al. Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia 13:831-IN22, 2011.

    Google Scholar 

  4. Alfieri, M., et al. A targeted mass spectrometry method to screen collagen types I–V in the decellularized 3D extracellular matrix of the adult male rat thyroid. Talanta 193:1–8, 2019.

    CAS  PubMed  Google Scholar 

  5. Alford, A. I., K. M. Kozloff, and K. D. Hankenson. Extracellular matrix networks in bone remodeling. Int. J. Biochem. Cell Biol. 65:20–31, 2015.

    CAS  PubMed  Google Scholar 

  6. Angammana, C. J., and S. H. Jayaram. The effects of electric field on the multijet electrospinning process and fiber morphology. IEEE Trans. Ind. Appl. 47:1028–1035, 2011.

    Google Scholar 

  7. Badrossamay, M. R., H. A. McIlwee, J. A. Goss, and K. K. Parker. Nanofiber assembly by rotary jet-spinning. Nano Lett. 10:2257–2261, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Badrossamay, M. R., et al. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials 35:3188–3197, 2014.

    CAS  PubMed  Google Scholar 

  9. Badylak, S. F., D. A. Taylor, and K. Uygun. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13:27–33, 2011.

    CAS  PubMed  Google Scholar 

  10. Baiocchini, A., et al. Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS ONE 11:1–14, 2016.

    Google Scholar 

  11. Bakhru, S., et al. Direct and cell signaling-based, geometry-induced neuronal differentiation of neural stem cells. Integr. Biol. 3:1207–1214, 2011.

    CAS  Google Scholar 

  12. Ban, D. X., Y. Liu, T. W. Cao, S. J. Gao, and S. Q. Feng. The preparation of rat’s acellular spinal cord scaffold and co-culture with rat’s spinal cord neuron in vitro. Spinal Cord 55:411–418, 2017.

    PubMed  Google Scholar 

  13. Baptista, P. M., et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53:604–617, 2011.

    CAS  PubMed  Google Scholar 

  14. Barber, J. G., A. M. Handorf, T. J. Allee, and W.-J. Li. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng. A 19:1265–1274, 2011.

    Google Scholar 

  15. Baumann, K. Cell migration: switching to 3D. Nat. Rev. Mol. Cell Biol. 13:338–339, 2012.

    PubMed  Google Scholar 

  16. Benninger, Y., et al. β1-integrin signaling mediates premyelinating oligodendrocyte survival but is not required for CNS myelination and remyelination. J. Neurosci. 26:7665–7673, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bilston, L. E., and L. E. Thibault. The mechanical properties of the human cervical spinal cord in vitro. Ann. Biomed. Eng. 24:67–74, 1995.

    Google Scholar 

  18. Bonandrini, B., et al. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng. A 20:1486–1498, 2014.

    CAS  Google Scholar 

  19. Boon, C. H., T. Cao, L. W. Stanton, P. Robson, and B. Olsen. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J. Bone Miner. Res. 19:1379–1394, 2004.

    Google Scholar 

  20. Booth, A. J., et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 186:866–876, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brandan, E., and N. C. Inestrosa. Isolation of the heparan sulfate proteoglycans from the extracellular matrix of rat skeletal muscle. J. Neurobiol. 18:271–282, 1987.

    CAS  PubMed  Google Scholar 

  22. Brazile, B., et al. Ultrastructure and biomechanics of skeletal muscle ECM: implications in tissue regeneration. In: Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine, edited by J. L. Brown, S. G. Kumbar, and B. L. Banik. Amsterdam: Elsevier, 2016, pp. 139–160.

    Google Scholar 

  23. Bružauskaitė, I., D. Bironaitė, E. Bagdonas, and E. Bernotienė. Scaffolds and cells for tissue regeneration: different scaffold pore sizes: different cell effects. Cytotechnology 68:355–369, 2016.

    PubMed  Google Scholar 

  24. Burdick, J. A., and G. Vunjak-Novakovic. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. A 15:205–219, 2009.

    CAS  Google Scholar 

  25. Burgess, J. K., T. Mauad, G. Tjin, J. C. Karlsson, and G. Westergren-Thorsson. The extracellular matrix: the under-recognized element in lung disease? J. Pathol. 240:397–409, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Burridge, K., and C. Guilluy. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343:14–20, 2016.

    CAS  PubMed  Google Scholar 

  27. Caló, E., and V. V. Khutoryanskiy. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65:252–267, 2015.

    Google Scholar 

  28. Cardwell, R. D., L. A. Dahlgren, and A. S. Goldstein. Electrospun fibre diameter, not alignment, affects mesenchymal stem cell differentiation into the tendon/ligament lineage. J. Tissue Eng. Regen. Med. 8:937–945, 2014.

    CAS  PubMed  Google Scholar 

  29. Case, L. B., and C. M. Waterman. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17:955–963, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chainani, A., et al. Multilayered electrospun scaffolds for tendon tissue engineering. Tissue Eng. A 19:2594–2604, 2013.

    CAS  Google Scholar 

  31. Chang, C. W., et al. Mesenchymal stem cell seeding of porcine small intestinal submucosal extracellular matrix for cardiovascular applications. PLoS ONE 11:1–19, 2016.

    CAS  Google Scholar 

  32. Chani, B., V. Puri, R. C. Sobti, V. Jha, and S. Puri. Decellularized scaffold of cryopreserved rat kidney retains its recellularization potential. PLoS ONE 12:1–20, 2017.

    Google Scholar 

  33. Chanpimol, S., B. Seamon, H. Hernandez, M. Harris-love, and M. R. Blackman. The influence of pore size and stiffness on tenocyte bioactivity and transcriptomic stability in collagen-GAG scaffolds. J. Mech. Behav. Biomed. Mater. 65:295–305, 2017.

    Google Scholar 

  34. Chen, Y.-C., et al. Development and characterization of acellular extracellular matrix scaffolds from porcine menisci for use in cartilage tissue engineering. Tissue Eng. C 21:971–986, 2015.

    Google Scholar 

  35. Choi, Y. C., et al. Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng. C 18:866–876, 2012.

    CAS  Google Scholar 

  36. Citro, A., et al. The human pancreas as a source of pro-tolerogenic extracellular matrix scaffold for a new generation bio-artificial endocrine pancreas. Ann. Surg. 264:169–179, 2016.

    PubMed  Google Scholar 

  37. Comley, K., and N. A. Fleck. A micromechanical model for the Young’s modulus of adipose tissue. Int. J. Solids Struct. 47:2982–2990, 2010.

    Google Scholar 

  38. Conti, M. A., S. Even-Ram, C. Liu, K. M. Yamada, and R. S. Adelstein. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J. Biol. Chem. 279:41263–41266, 2004.

    CAS  PubMed  Google Scholar 

  39. Cortiella, J., et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng. A 16:2565–2580, 2010.

    CAS  Google Scholar 

  40. Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Daly, A. B., et al. Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng. A 18:1–16, 2011.

    Google Scholar 

  42. Dang, J. M., and K. W. Leong. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv. Mater. 19:2775–2779, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dankers, P. Y. W., et al. The use of fibrous, supramolecular membranes and human tubular cells for renal epithelial tissue engineering: towards a suitable membrane for a bioartificial kidney. Macromol. Biosci. 10:1345–1354, 2010.

    CAS  PubMed  Google Scholar 

  44. De Waele, J., et al. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 41:122–131, 2015.

    PubMed  Google Scholar 

  45. DeQuach, J. A., S. H. Yuan, L. S. B. Goldstein, and K. L. Christman. Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng. A 17:2583–2592, 2011.

    CAS  Google Scholar 

  46. DeQuach, J. A., et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS ONE 5:e13039, 2010.

    PubMed  PubMed Central  Google Scholar 

  47. Dong, J., M. Yu, Y. Zhang, Y. Yin, and W. Tian. Recent developments and clinical potential on decellularized adipose tissue. J. Biomed. Mater. Res. A 106:2563–2574, 2018.

    CAS  PubMed  Google Scholar 

  48. Dong, S.-W., et al. Bone regeneration using an acellular extracellular matrix and bone marrow mesenchymal stem cells expressing Cbfa1. Biosci. Biotechnol. Biochem. 73:2226–2233, 2009.

    CAS  PubMed  Google Scholar 

  49. Du, J., et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc. Natl. Acad. Sci. 108:9466–9471, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Duan, Y., et al. Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J. Cardiovasc. Transl. Res. 4:605, 2011.

    PubMed  PubMed Central  Google Scholar 

  51. Duband, J.-L., T. Darribère, J.-C. Boucaut, H. Boulekbache, and J. P. Thiery. Regulation of development by the extracellular matrix. Cell Membr. 1198:1–53, 1987.

    Google Scholar 

  52. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    CAS  PubMed  Google Scholar 

  53. Evans, N. D., et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur. Cells Mater. 18:1–13, 2009.

    CAS  Google Scholar 

  54. Fan, M., J. Xian, G. Zhou, C. Liang, and S. Liu. Study in vitro on p16beta interfering the cell cycle signal conduction of laryngeal squamous cell carcinoma. Tissue Eng. A 16:515–519, 2010.

    Google Scholar 

  55. Fisher, O. Z., A. L. I. Khademhosseini, R. Langer, and N. A. Peppas. Bioinspired materials for controlling stem cell fate. Acc Chem Res 43:419–428, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Flanagan, L. A., Y.-E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13:2411, 2002.

    PubMed  PubMed Central  Google Scholar 

  57. Forte, G., et al. Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination. Stem Cells 26:2093–2103, 2008.

    CAS  PubMed  Google Scholar 

  58. Frantz, C., K. M. Stewart, and V. M. Weaver. The extracellular matrix at a glance. J. Cell Sci. 123:4195–4200, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Freedman, B. S., and B. Ratner. Building scaffolds to rebuild kidneys. ACS Cent. Sci. 5:380–382, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. French, K. M., et al. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater. 8:4357–4364, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Friedl, P., E. Sahai, S. Weiss, and K. M. Yamada. New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13:743–747, 2012.

    CAS  PubMed  Google Scholar 

  62. Fromstein, J. D., et al. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Eng. A 14:369–378, 2008.

    CAS  Google Scholar 

  63. Fu, R. H., et al. Decellularization and recellularization technologies in tissue engineering. Cell Transplant. 23:621–630, 2014.

    PubMed  Google Scholar 

  64. Gao, M., et al. Comparative evaluation of decellularized porcine liver matrices crosslinked with different chemical and natural crosslinking agents. Xenotransplantation 26:e12470, 2019.

    PubMed  Google Scholar 

  65. Garcés-Schröder, M., et al. Characterization of skeletal muscle passive mechanical properties by novel micro-force sensor and tissue micro-dissection by femtosecond laser ablation. Microelectron. Eng. 192:70–76, 2018.

    Google Scholar 

  66. Gershlak, J. R., et al. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem. Biophys. Res. Commun. 439:161–166, 2013.

    CAS  PubMed  Google Scholar 

  67. Gilbert, T. W., T. L. Sellaro, and S. F. Badylak. Decellularization of tissues and organs. Biomaterials 27:3675–3683, 2006.

    CAS  PubMed  Google Scholar 

  68. Gillies, A. R., and R. L. Lieber. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gilpin, S. E., et al. Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix. Ann. Thorac. Surg. 98:1721–1729, 2014.

    PubMed  PubMed Central  Google Scholar 

  70. Goh, S. K., et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 34:6760–6772, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gong, T., et al. Nanomaterials and bone regeneration. Bone Res. 3:15029, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Granstrom, L., G. Ekman, U. Ulmsten, and A. Malmstrom. Changes in the connective tissue of corpus and cervix uteri during ripening and labour in term pregnancy. BJOG Int. J. Obstet. Gynaecol. 96:1198–1202, 1989.

    CAS  Google Scholar 

  73. Grikscheit, T., and P. De Coppi. Intestinal regeneration. In: Current Concepts of Intestinal Failure, edited by R. J. Rintala, M. Pakarinen, and T. Wester. New York: Springer, 2016, pp. 141–149.

    Google Scholar 

  74. Gritsenko, P. G., O. Ilina, and P. Friedl. Interstitial guidance of cancer invasion. J. Pathol. 226:185–199, 2012.

    CAS  PubMed  Google Scholar 

  75. Guan, Y., et al. Porcine kidneys as a source of ECM scaffold for kidney regeneration. Mater. Sci. Eng. C 56:451–456, 2015.

    CAS  Google Scholar 

  76. Haggerty, A. E., M. M. Marlow, and M. Oudega. Extracellular matrix components as therapeutics for spinal cord injury. Neurosci. Lett. 652:50–55, 2017.

    CAS  PubMed  Google Scholar 

  77. Hall, A., et al. Nanonet force microscopy for measuring forces in single smooth muscle cells of the human aorta. Mol. Biol. Cell 28:1894–1900, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Harada, S. I., and G. A. Rodan. Control of osteoblast function and regulation of bone mass. Nature 423:349–355, 2003.

    CAS  PubMed  Google Scholar 

  79. Hashemi, J., et al. Decellularized pancreas matrix scaffolds for tissue engineering using ductal or arterial catheterization. Cells Tissues Organs 205:72–84, 2018.

    CAS  PubMed  Google Scholar 

  80. He, J. H., Y. Liu, L. Xu, J. Y. Yu, and G. Sun. BioMimic fabrication of electrospun nanofibers with high-throughput. Chaos Solitons Fractals 37:643–651, 2008.

    CAS  Google Scholar 

  81. Heydarkhan-Hagvall, S., et al. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29:2907–2914, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Higuchi, A., Q. D. Ling, Y. Chang, S. T. Hsu, and A. Umezawa. Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 113:3297–3328, 2013.

    CAS  PubMed  Google Scholar 

  83. Hjelm, A., G. Ekman-Ordeberg, K. Barchan, and A. Malmström. Identification of the major proteoglycans from human myometrium. Acta Obstet. Gynecol. Scand. 80:1084–1090, 2001.

    CAS  PubMed  Google Scholar 

  84. Ho, T., et al. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing e thawing method to investigate stem cell differentiation behaviors. Biomaterials 40:51–60, 2015.

    Google Scholar 

  85. Hollenstein, M., A. Nava, D. Valtorta, J. G. Snedeker, and E. Mazza. Mechanical Characterization of the Liver Capsule and Parenchyma Marc. Lecture Notes in Computer Science. Berlin: Springer, 2006. https://doi.org/10.1016/j.arr.2010.02.003.

    Book  Google Scholar 

  86. Hoshiba, T., H. Lu, N. Kawazoe, and G. Chen. Decellularized matrices for tissue engineering. Expert Opin. Biol. Ther. 10:1717–1728, 2010.

    CAS  PubMed  Google Scholar 

  87. Hoshiba, T., et al. Decellularized extracellular matrix as an in vitro model to study the comprehensive roles of the ECM in stem cell differentiation. Stem Cells Int. 2016. https://doi.org/10.1155/2016/6397820.

    Article  PubMed  Google Scholar 

  88. Hussein, K. H., K. M. Park, K. S. Kang, and H. M. Woo. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Mater. Sci. Eng. C 67:766–778, 2016.

    CAS  Google Scholar 

  89. Ihida-Stansbury, K., et al. Role played by Prx1-dependent extracellular matrix properties in vascular smooth muscle development in embryonic lungs. Pulm. Circ. 5:382–397, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Järveläinen, H. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol. Rev. 61:198–223, 2009.

    PubMed  PubMed Central  Google Scholar 

  91. Kajbafzadeh, A.-M., N. Javan-Farazmand, M. Monajemzadeh, and A. Baghayee. Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue. Tissue Eng. C 19:642–651, 2013.

    CAS  Google Scholar 

  92. Kang, X., et al. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials 28:450–458, 2007.

    CAS  PubMed  Google Scholar 

  93. Keely, P., and A. Nain. Capturing relevant extracellular matrices for investigating cell migration. F1000 Res. 4:1408, 2015.

    Google Scholar 

  94. Ker, E. D. F., et al. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32:8097–8107, 2011.

    CAS  PubMed  Google Scholar 

  95. Khademhosseini, A., and R. Langer. Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092, 2007.

    CAS  PubMed  Google Scholar 

  96. Khetan, S., et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12:458–465, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. 107:4872–4877, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim, H., M. J. Cooke, and M. S. Schoichet. Creating permissive microenvironments for stem cell transplantation into the central nervous system. Trends Biotechnol. 30:55–63, 2012.

    CAS  PubMed  Google Scholar 

  99. Kim, G. A., J. R. Spence, and S. Takayama. Bioengineering for intestinal organoid cultures. Curr Opin Biotechnol 47:51–58, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Klaas, M., et al. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci. Rep. 6:1–12, 2016.

    Google Scholar 

  101. Knippenberg, M., et al. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng. 11:1780–1788, 2005.

    CAS  PubMed  Google Scholar 

  102. Kohane, D. S., and R. Langer. Polymeric biomaterials in tissue engineering. Pediatr. Res. 63:487–491, 2008.

    CAS  PubMed  Google Scholar 

  103. Koons, B., et al. Cancer protrusions on a tightrope: nanofiber curvature contrast quantitates single protrusion dynamics. ACS Nano 11:12037–12048, 2017.

    CAS  PubMed  Google Scholar 

  104. Koosha, M., and H. Mirzadeh. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mater. Res. A 103:3081–3093, 2015.

    CAS  PubMed  Google Scholar 

  105. Kopecek, J., and J. Yang. Hydrogels as smart biomaterials. Polym. Int. 1098:1078–1098, 2007.

    Google Scholar 

  106. Koser, D. E., E. Moeendarbary, J. Hanne, S. Kuerten, and K. Franze. CNS cell distribution and axon orientation determine local spinal cord mechanical properties. Biophys. J. 108:2137–2147, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee, J. S., et al. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 15:206–218, 2013.

    PubMed  Google Scholar 

  108. Legant, W. R., et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl. Acad. Sci. 106:10097–10102, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Leipzig, N. D., and M. S. Shoichet. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30:6867–6878, 2009.

    CAS  PubMed  Google Scholar 

  110. Li, C., C. Vepari, H.-J. Jin, H. J. Kim, and D. L. Kaplan. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124, 2006.

    CAS  PubMed  Google Scholar 

  111. Li, D., and Y. Xia. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16:1151–1170, 2004.

    CAS  Google Scholar 

  112. Liang, R., et al. Positive effects of an extracellular matrix hydrogel on rat anterior cruciate ligament fibroblast proliferation and collagen mRNA expression. J. Orthop. Transl. 3:114–122, 2015.

    Google Scholar 

  113. Lieber, R. L., E. Runesson, F. Einarsson, and J. Fridén. Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve 28:464–471, 2003.

    PubMed  Google Scholar 

  114. Light, N., and A. E. Champion. Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem. J. 219:1017–1026, 1984.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lim, S. H., and H. Q. Mao. Electrospun scaffolds for stem cell engineering. Adv. Drug Deliv. Rev. 61:1084–1096, 2009.

    CAS  PubMed  Google Scholar 

  116. Liu, Y., D. Luo, and T. Wang. Hierarchical structures of bone and bioinspired bone tissue engineering. Small 12:4611–4632, 2016.

    CAS  PubMed  Google Scholar 

  117. Loneker, A. E., D. M. Faulk, G. S. Hussey, A. D’Amore, and S. F. Badylak. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro. J. Biomed. Mater. Res. A 104:957–965, 2016.

    CAS  PubMed  Google Scholar 

  118. Lu, Q., M. Li, Y. Zou, and T. Cao. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. J. Control. Release 174:43–50, 2014.

    CAS  PubMed  Google Scholar 

  119. Lu, T., et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials 51:173–183, 2015.

    CAS  PubMed  Google Scholar 

  120. Luo, Y., D. Lou, L. Ma, and C. Gao. Optimizing detergent concentration and processing time to balance the decellularization efficiency and properties of bioprosthetic heart valves. J. Biomed. Mater. Res. A 2019. https://doi.org/10.1002/jbm.a.36732.

    Article  PubMed  Google Scholar 

  121. Lv, H., et al. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Res. Ther. 6(103):1–11, 2015.

    CAS  Google Scholar 

  122. Mahmoud, H., A. Wagoner Johnson, E. K. Chien, M. J. Poellmann, and B. McFarlin. System-level biomechanical approach for the evaluation of term and preterm pregnancy maintenance. J. Biomech. Eng. 135:021009, 2013.

    PubMed  Google Scholar 

  123. Makino, M., K. Mimatsu, H. Saito, N. Konishi, and Y. Hashizume. Morphometric study of myelinated fibers in human cervical spinal cord white matter. Spine (Phila. Pa. 1976) 21:1010–1016, 1996.

    CAS  Google Scholar 

  124. Maldonado, M., et al. Lineage-and developmental stage-specific mechanomodulation of induced pluripotent stem cell differentiation. Stem Cell Res. Ther. 8:1–7, 2017.

    Google Scholar 

  125. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stemm cell lineage commitment. Dev. Cell 6:483–495, 2004.

    CAS  PubMed  Google Scholar 

  126. McKee, C. T., J. A. Last, P. Russell, and C. J. Murphy. Indentation versus tensile measurements of young’s modulus for soft biological tissues. Tissue Eng. B 17:155–164, 2011.

    Google Scholar 

  127. Meehan, S., and A. S. Nain. Role of suspended fiber structural stiffness and curvature on single-cell migration, nucleus shape, and focal-adhesion-cluster length. Biophys. J. 107:2604–2611, 2015.

    Google Scholar 

  128. Mendez, J. J., M. Ghaedi, D. Steinbacher, and L. E. Niklason. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Eng. A 20:1735–1746, 2014.

    CAS  Google Scholar 

  129. Mirmalek-Sani, S. H., et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials 34:5488–5495, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nagao, R. J., et al. Decellularized human kidney cortex hydrogels enhance kidney microvascular endothelial cell maturation and quiescence. Tissue Eng. A 22:1140–1150, 2016.

    CAS  Google Scholar 

  131. Nain, A. S., M. Sitti, A. Jacobson, T. Kowalewski, and C. Amon. Dry spinning based spinneret based tunable engineered parameters (STEP) technique for controlled and aligned deposition of polymeric nanofibers. Macromol. Rapid Commun. 30:1406–1412, 2009.

    CAS  PubMed  Google Scholar 

  132. Nain, A. S., and J. Wang. Polymeric nanofibers: isodiametric design space and methodology for depositing aligned nanofiber arrays in single and multiple layers. Polym. J. 45:695–700, 2013.

    CAS  Google Scholar 

  133. Nair, L. S., and C. T. Laurencin. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32:762–798, 2007.

    CAS  Google Scholar 

  134. Nakayama, K. H., C. C. I. Lee, C. A. Batchelder, and A. F. Tarantal. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS ONE 8:e64134, 2013.

    PubMed  PubMed Central  Google Scholar 

  135. Nam, J., J. Johnson, J. J. Lannutti, and S. Agarwal. Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomater. 7:1516–1524, 2011.

    CAS  PubMed  Google Scholar 

  136. Nicodemus, G. D., and S. J. Bryant. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. B 14:149–165, 2008.

    CAS  Google Scholar 

  137. O’Neill, J. D., et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann. Thorac. Surg. 96:1046–1055, 2013.

    PubMed  PubMed Central  Google Scholar 

  138. Oberwallner, B., et al. Human cardiac extracellular matrix supports myocardial lineage commitment of pluripotent stem cells. Eur. J. Cardio-thorac. Surg. 47:416–425, 2015.

    Google Scholar 

  139. Ogle, B. M., S. P. Palecek, D. R. Bogdanowicz, and H. H. Lu. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8:472–484, 2013.

    Google Scholar 

  140. Oh, S. H., I. K. Park, J. M. Kim, and J. H. Lee. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28:1664–1671, 2007.

    CAS  PubMed  Google Scholar 

  141. Opara, E. C., S.-H. Mirmalek-Sani, O. Khanna, M. L. Moya, and E. M. Brey. Design of a bioartificial pancreas+. J. Investig. Med. 58:831–837, 2010.

    PubMed  PubMed Central  Google Scholar 

  142. Orlando, G., et al. Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34:5915–5925, 2013.

    CAS  PubMed  Google Scholar 

  143. Ott, H. C., et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 14:213–221, 2008.

    CAS  PubMed  Google Scholar 

  144. Ottani, V., et al. Collagen fibril arrangement and size distribution in monkey oral mucosa. J. Anat. 192(Pt 3):321–328, 1998.

    PubMed  PubMed Central  Google Scholar 

  145. Pan, J., et al. Regeneration of a bioengineered thyroid using decellularized thyroid matrix. Thyroid 29:142–152, 2018.

    PubMed  Google Scholar 

  146. Parmaksiz, M., A. E. Elcin, and Y. M. Elcin. Decellularization of bovine small intestinal submucosa and its use for the healing of a critical-sized full-thickness skin defect, alone and in combination with stem cells, in a small rodent model. J. Tissue Eng. Regen. Med. 11:1754–1765, 2017.

    CAS  PubMed  Google Scholar 

  147. Pati, F., et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.

    CAS  PubMed  Google Scholar 

  148. Perniconi, B., et al. The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 32:7870–7882, 2011.

    CAS  PubMed  Google Scholar 

  149. Phipps, M. C., et al. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS ONE 6:e16813, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Poh, Y. C., et al. Generation of organized germ layers from a single mouse embryonic stem cell. Nat. Commun. 5:1–12, 2014.

    Google Scholar 

  151. Polacheck, W. J., and C. S. Chen. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13:415–423, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Puistola, U., L. Risteli, A. Kauppila, M. Knip, and J. Risteli. Markers of type I and type III collagen synthesis in serum as indicators of tissue growth during pregnancy. J. Clin. Endocrinol. Metab. 77:178–182, 1993.

    CAS  PubMed  Google Scholar 

  153. Rafiei, S., S. Maghsoodloo, B. Noroozi, V. Mottaghitalab, and A. K. Haghi. Mathematical modeling in electrospinning process of nanofibers: a detailed review. Cellul. Chem. Technol. 47:323–338, 2013.

    CAS  Google Scholar 

  154. Rashtbar, M., et al. Characterization of decellularized ovine small intestine submucosal layer as extracellular matrix-based scaffold for tissue engineering. J. Biomed. Mater. Res. B 106:933–944, 2018.

    CAS  Google Scholar 

  155. Reilly, G. C., and A. J. Engler. Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43:55–62, 2010.

    PubMed  Google Scholar 

  156. Riboldi, S. A., M. Sampaolesi, P. Neuenschwander, G. Cossu, and S. Mantero. Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials 26:4606–4615, 2005.

    CAS  PubMed  Google Scholar 

  157. Rivest, C., et al. Microscale hydrogels for medicine and biology: synthesis, characteristics and applications. J. Mech. Mater. Struct. 2:1103–1119, 2007.

    Google Scholar 

  158. Rogalski, J. J., C. W. M. Bastiaansen, and T. Peijs. Rotary jet spinning review: a potential high yield future for polymer nanofibers. Nanocomposites 3:97–121, 2017.

    Google Scholar 

  159. Ross, E. A., et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J. Am. Soc. Nephrol. 20:2338–2347, 2009.

    PubMed  PubMed Central  Google Scholar 

  160. Rozario, T., and D. W. DeSimone. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341:126–140, 2010.

    CAS  PubMed  Google Scholar 

  161. Sackett, S. D., et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 8:1–16, 2018.

    CAS  Google Scholar 

  162. Saldin, L. T., M. C. Cramer, S. S. Velankar, L. J. White, and S. F. Badylak. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 49:1–15, 2017.

    CAS  PubMed  Google Scholar 

  163. Schaefer, L., and R. M. Schaefer. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 339:237–246, 2010.

    CAS  PubMed  Google Scholar 

  164. Schenke-Layland, K., et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26:1537–1546, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Schmelter, M., B. Ateghang, S. Helmig, M. Wartenberg, and H. Sauer. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J. 20:1182–1184, 2006.

    CAS  PubMed  Google Scholar 

  166. Sell, S. A., M. J. McClure, K. Garg, P. S. Wolfe, and G. L. Bowlin. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 61:1007–1019, 2009.

    CAS  PubMed  Google Scholar 

  167. Sellaro, T. L., et al. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng. A 16:1075–1082, 2009.

    Google Scholar 

  168. Shabani, I., et al. Enhanced infiltration and biomineralization of stem cells on collagen-grafted three-dimensional nanofibers. Tissue Eng. A 17:1209–1218, 2011.

    CAS  Google Scholar 

  169. Sharma, P., et al. Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps. Mol. Biol. Cell 28:2579–2588, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Sheets, K., J. Wang, W. Zhao, R. Kapania, and A. S. Nain. Nanonet force microscopy for measuring cell forces. Biophys. J. 111:197–207, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Shi, L., and V. Ronfard. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int. J. Burns Trauma 3:173–179, 2013.

    PubMed  PubMed Central  Google Scholar 

  172. Shin, M., H. Yoshimoto, and J. P. Vacanti. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 10:33–41, 2004.

    CAS  PubMed  Google Scholar 

  173. Shynlova, O., J. A. Mitchell, A. Tsampalieros, B. L. Langille, and S. J. Lye. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium. Biol. Reprod. 70:986–992, 2004.

    CAS  PubMed  Google Scholar 

  174. Silver, F. H., J. W. Freeman, and G. P. Seehra. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36:1529–1553, 2003.

    PubMed  Google Scholar 

  175. Simpson, D. L., et al. Engineering patient-specific valves using stem cells generated from skin biopsy specimens. Ann. Thorac. Surg. 98:947–954, 2014.

    PubMed  Google Scholar 

  176. Snedeker, J. G., et al. Strain-rate dependent material properties of the porcine and human kidney capsule. J. Biomech. 38:1011–1021, 2005.

    CAS  PubMed  Google Scholar 

  177. Stevens, M. M. Biomaterials for bone Materials that enhance bone regeneration have a wealth of potential. Mater. Today 11:18–25, 2008.

    CAS  Google Scholar 

  178. Sunyer, R., A. J. Jin, R. Nossal, and D. L. Sackett. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS ONE 7:1–9, 2012.

    Google Scholar 

  179. Toda, S., N. Koike, and H. Sugihara. Thyrocyte integration, and thyroid folliculogenesis and tissue regeneration: perspective for thyroid tissue engineering. Pathol. Int. 51:403–417, 2001.

    CAS  PubMed  Google Scholar 

  180. Toshima, M., Y. Ohtani, and O. Ohtani. Three-dimensional architecture of elastin and collagen fiber networks in the human and rat lung. Arch. Histol. Cytol. 67:31–40, 2004.

    CAS  PubMed  Google Scholar 

  181. Totonelli, G., et al. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33:3401–3410, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Totti, S., M. C. Allenby, S. B. Dos Santos, A. Mantalaris, and E. G. Velliou. A 3D bioinspired highly porous polymeric scaffolding system for: in vitro simulation of pancreatic ductal adenocarcinoma. RSC Adv. 8:20928–20940, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Tse, J. R., and A. J. Engler. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6:e15978, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Vacanti, J. P., and R. Langer. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34, 1999.

    Google Scholar 

  185. van Genderen, A. M., J. Jansen, C. Cheng, T. Vermonden, and R. Masereeuw. Renal tubular- and vascular basement membranes and their mimicry in engineering vascularized kidney tubules. Adv. Healthc. Mater. 7:1–13, 2018.

    Google Scholar 

  186. Vlierberghe, S. Van, P. Dubruel, and E. Schacht. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408, 2011.

    PubMed  Google Scholar 

  187. Volper, B. D., et al. Influence of acute and chronic streptozotocin-induced diabetes on the rat tendon extracellular matrix and mechanical properties. Am. J. Physiol. Integr. Comp. Physiol. 309:R1135–R1143, 2015.

    CAS  Google Scholar 

  188. Wang, J. H. C. Mechanobiology of tendon. J. Biomech. 39:1563–1582, 2006.

    PubMed  Google Scholar 

  189. Wang, L., J. A. Johnson, Q. Zhang, and E. K. Beahm. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomater. 9:8921–8931, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Wang, Y., et al. The differential effects of aligned electrospun PHBHHx fibers on adipogenic and osteogenic potential of MSCs through the regulation of PPARγ signaling. Biomaterials 33:485–493, 2012.

    CAS  PubMed  Google Scholar 

  191. Wren, T. A. L., S. A. Yerby, G. S. Beaupre, and D. R. Carter. Mechanical properties of the human achilles tendon. Clin. Biomech. 16:245–251, 2001.

    CAS  Google Scholar 

  192. Yamada, K. M., R. Pankov, and E. Cukierman. Dimensions and dynamics in integrin function. Braz. J. Med. Biol. Res. 36:959–966, 2003.

    CAS  PubMed  Google Scholar 

  193. Yan, J., et al. Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior. J. Biomed. Mater. Res. A 100(A):527–535, 2012.

    PubMed  Google Scholar 

  194. Yang, G., et al. Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34:9295–9306, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Yim, E. K. F., and M. P. Sheetz. Force-dependent cell signaling in stem cell diff erentiation. Stem Cell Res. Ther. 3:41, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Young, D. A., Y. S. Choi, A. J. Engler, and K. L. Christman. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34:8581–8588, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Young, J. L., and A. J. Engler. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32:1002–1009, 2011.

    CAS  PubMed  Google Scholar 

  198. Young, J. L., A. W. Holle, and J. P. Spatz. Nanoscale and mechanical properties of the physiological cell: ECM microenvironment. Exp. Cell Res. 343:3–6, 2016.

    CAS  PubMed  Google Scholar 

  199. Youngstrom, D. W., J. G. Barrett, R. R. Jose, and D. L. Kaplan. Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS ONE 8:e64151, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Youngstrom, D. W., I. Rajpar, D. L. Kaplan, and J. G. Barrett. A bioreactor system for in vitro tendon differentiation and tendon tissue engineering. J. Orthop. Res. 33:911–918, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Yuan, N., et al. Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair. Neural Regen. Res. 9:1014–1019, 2014.

    PubMed  PubMed Central  Google Scholar 

  202. Zhang, J., B. Li, and J. H. C. Wang. The role of engineered tendon matrix in the stemness of tendon stem cells in vitro and the promotion of tendon-like tissue formation in vivo. Biomaterials 32:6972–6981, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhang, J., et al. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials 89:114–126, 2016.

    CAS  PubMed  Google Scholar 

  204. Zhou, Y., et al. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol. 73:77–104, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Zoldan, J., et al. The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials 32:9612–9621, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the support provided by Institute for Critical Technology and Applied Science ICTAS), Virginia Tech. This research was partially funded NSF Grants CMMI-1437101 and CMMI-1462916 to ASN.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrinder S. Nain.

Additional information

Associate Editor Emmanuel Opara oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padhi, A., Nain, A.S. ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Ann Biomed Eng 48, 1071–1089 (2020). https://doi.org/10.1007/s10439-019-02337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02337-7

Keywords

Navigation