Skip to main content
Log in

Evolution and Current Applications of Robot-Assisted Fracture Reduction: A Comprehensive Review

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Robots in orthopedic surgery have been developed rapidly for decades and bring significant benefits to the patients and healthcare providers. However, robotics in fracture reduction remains at the infant stage. As essential components of the current robotic system, external fixators were used in fracture reduction, including the unilateral and Ilizarov-like ring fixators. With emerging of the industrial robots and mechanical arms, their sterilized variants were developed as the serial robots, including the traction device and robotic arm, for fracture reduction. Besides, parallel robots (e.g., Gough–Stewart platform) were devised for lower extremity traction and fracture reduction. After combining the advantages of the serial and parallel mechanisms, hybrid robots can fulfill specific clinical requirements (e.g., the joint fracture, including multiple major fragments). Furthermore, with the aid of intra-operative navigation systems, fracture reduction can be performed under real-time guidance. The paper presents a comprehensive overview of the advancement of the robots in fracture reduction and evaluates research challenges and future perspectives, including ergonomic and economic issues, operation time, artificial realities and intelligence, and telesurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abedinnasab, M. H., F. Farahmand, and J. Gallardo-Alvarado. The wide-open three-legged parallel robot for long-bone fracture reduction. J. Mech. Robot. 9:015001, 2017. https://doi.org/10.1115/1.4035495.

    Article  Google Scholar 

  2. Bouazza-Marouf, K., I. Browbank, and J. R. Hewit. Robotic-assisted internal fixation of femoral fractures. Proc. Inst. Mech. Eng. H 209:51–58, 1995.

    CAS  PubMed  Google Scholar 

  3. Brandt, G., K. Radermacher, S. Lavallée, H.-W. Staudte, and G. Rau. A compact robot for image guided orthopedic surgery: concept and preliminary results. In: CVRMed-MRCAS’97. Springer, 1997, pp. 767–776.

  4. Buschbaum, J., R. Fremd, T. Pohlemann, and A. Kristen. Computer-assisted fracture reduction: a new approach for repositioning femoral fractures and planning reduction paths. Int. J. Comput. Assist. Radiol. Surg. 10:149–159, 2015.

    PubMed  Google Scholar 

  5. Buschbaum, J., R. Fremd, T. Pohlemann, and A. Kristen. Introduction of a computer-based method for automated planning of reduction paths under consideration of simulated muscular forces. Int. J. Comput. Assist. Radiol. Surg. 12:1369–1381, 2017.

    PubMed  Google Scholar 

  6. Cakiroglu, M. S., I. Sancaktar, M. Ulutas, and A. H. Ertas. Design of an assistant robot for alignment of fractured bones in medical operations. Comput. Methods Biomech. Biomed. Eng. 17(Suppl 1):188–189, 2014. https://doi.org/10.1080/10255842.2014.931677.

    Article  Google Scholar 

  7. Chen, A. F., G. S. Kazarian, G. W. Jessop, and A. Makhdom. Robotic technology in orthopaedic surgery. J. Bone Joint Surg. 100:1984–1992, 2018.

    PubMed  Google Scholar 

  8. Cutolo, F., S. Carli, P. D. Parchi, L. Canalini, M. Ferrari, M. Lisanti, and V. Ferrari. AR interaction paradigm for closed reduction of long-bone fractures via external fixation. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. ACM, 2016, pp. 305–306.

  9. Dagneaux, L., R. Allal, M. Pithioux, P. Chabrand, M. Ollivier, and J. N. Argenson. Femoral malrotation from diaphyseal fractures results in changes in patellofemoral alignment and higher patellofemoral stress from a finite element model study. Knee 25:807–813, 2018.

    PubMed  Google Scholar 

  10. Dagnino, G., I. Georgilas, P. Köhler, R. Atkins, and S. Dogramadzi. Image-based robotic system for enhanced minimally invasive intra-articular fracture surgeries. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016, pp. 696–701.

  11. Dagnino, G., I. Georgilas, P. Köhler, S. Morad, R. Atkins, and S. Dogramadzi. Navigation system for robot-assisted intra-articular lower-limb fracture surgery. Int. J. Comput. Assist. Radiol. Surg. 11:1831–1843, 2016.

    PubMed  PubMed Central  Google Scholar 

  12. Dagnino, G., I. Georgilas, S. Morad, P. Gibbons, P. Tarassoli, R. Atkins, and S. Dogramadzi. Image-guided surgical robotic system for percutaneous reduction of joint fractures. Ann. Biomed. Eng. 45:2648–2662, 2017.

    PubMed  PubMed Central  Google Scholar 

  13. Dagnino, G., I. Georgilas, S. Morad, P. Köhler, P. Gibbons, P. Tarassoli, R. Atkins, and S. Dogramadzi. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery. Int. J. Comput. Assist. Radiol. Surg. 12:1383–1397, 2017.

    PubMed  PubMed Central  Google Scholar 

  14. Dagnino, G., I. Georgilas, P. Tarassoli, R. Atkins, and S. Dogramadzi. Design and real-time control of a robotic system for fracture manipulation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2015, pp. 4865–4868.

  15. Dagnino, G., I. Georgilas, P. Tarassoli, R. Atkins, and S. Dogramadzi. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery. Int. J. Comput. Assist. Radiol. Surg. 11:437–455, 2016.

    PubMed  Google Scholar 

  16. Dagnino, G., L. S. Mattos, and D. G. Caldwell. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery. Int. J. Comput. Assist. Radiol. Surg. 10:217–229, 2015.

    PubMed  Google Scholar 

  17. Danieli, G. A., G. Fragomeni, G. Gatti, and E. Giuzio. Applying enhanced reality in fracture reduction with external fixation. In: Proceedings of the 9th WSEAS International Conference on Systems. World Scientific and Engineering Academy and Society (WSEAS), 2005, p. 50.

  18. Danieli, G. A., G. Fragomeni, G. Gatti, A. Merola, and D. Moschella. Actual developments of Navi-Robot, a navigator able to block itself in the correct position during orthopaedic surgical procedures. In: Proceedings of the 9th WSEAS International Conference on Systems. World Scientific and Engineering Academy and Society (WSEAS), 2005, p. 51.

  19. Douke, T., Y. Nakajima, Y. Mori, S. Onogi, N. Sugita, M. Mitsuishi, M. Bessho, S. Ohhashi, K. Tobita, I. Ohnishi, I. Sakuma, T. Dohi, Y. Maeda, T. Koyama, N. Sugano, K. Yonenobu, Y. Matsumoto, and K. Nakamura. Control of fracture reduction robot using force/torque measurement. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008, pp. 3265–3268.

  20. Du, D., Z. Liu, S. Omori, M. Kurita, T. Tomita, K. Sugamoto, H. Yoshikawa, and T. Murase. Computer-aided parachute guiding system for closed reduction of diaphyseal fractures. Int. J. Med. Robot. Comput. Assist. Surg. 10:325–331, 2014.

    Google Scholar 

  21. Du, H., L. Hu, C. Li, C. He, L. Zhang, and P. Tang. Preoperative trajectory planning for closed reduction of long-bone diaphyseal fracture using a computer-assisted reduction system. Int. J. Med. Robot. Comput. Assist. Surg. 11:58–66, 2015.

    Google Scholar 

  22. Du, H., L. Hu, C. Li, T. Wang, L. Zhao, Y. Li, Z. Mao, D. Liu, L. Zhang, C. He, L. Zhang, H. Hou, L. Zhang, and P. Tang. Advancing computer-assisted orthopaedic surgery using a hexapod device for closed diaphyseal fracture reduction. Int. J. Med. Robot. Comput. Assist. Surg. 11:348–359, 2015.

    Google Scholar 

  23. Elmi-Terander, A., G. Burstrom, R. Nachabe, H. Skulason, K. Pedersen, M. Fagerlund, F. Stahl, A. Charalampidis, M. Soderman, S. Holmin, D. Babic, I. Jenniskens, E. Edstrom, and P. Gerdhem. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study. Spine 44:517–525, 2019.

    PubMed  Google Scholar 

  24. Faschingbauer, M., H. J. Heuer, K. Seide, R. Wendlandt, M. Munch, C. Jurgens, and R. Kirchner. Accuracy of a hexapod parallel robot kinematics based external fixator. Int. J. Med. Robot. Comput. Assist. Surg. 11:424–435, 2015.

    Google Scholar 

  25. Frank, J., B. Gritzbach, C. Winter, B. Maier, and I. Marzi. Computer-assisted femur fracture reduction. Eur. J. Trauma Emerg. Surg. 36:151–156, 2010.

    PubMed  Google Scholar 

  26. Fu, L., Z. Du, and L. Sun. A novel robot-assisted bonesetting system. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2004, pp. 2247–2252.

  27. Fuchtmeier, B., S. Egersdoerfer, R. Mai, R. Hente, D. Dragoi, G. Monkman, and M. Nerlich. Reduction of femoral shaft fractures in vitro by a new developed reduction robot system ‘RepoRobo’. Injury 35(Suppl 1):a113–a119, 2004. https://doi.org/10.1016/j.injury.2004.05.019.

    Article  Google Scholar 

  28. Fuechtmeier, B., S. Egersdoerfer, G. Tuma, G. J. Monkman, and M. Nerlich. Development of a robotic navigation and fracture fixation system. Stud. Health Technol. Inform. 97:43–49, 2003.

    PubMed  Google Scholar 

  29. Garcia, P., J. Rosen, C. Kapoor, M. Noakes, G. Elbert, M. Treat, T. Ganous, M. Hanson, J. Manak, C. Hasser, D. Rohler, and R. Satava. Trauma Pod: a semi-automated telerobotic surgical system. Int. J. Med. Robot. Comput. Assist. Surg. 5:136–146, 2009.

    Google Scholar 

  30. George, E. I., T. C. Brand, A. LaPorta, J. Marescaux, and R. M. Satava. Origins of robotic surgery: from skepticism to standard of care. JSLS J. Soc. Laparoendosc. Surg. 22:39, 2018. https://doi.org/10.4293/jsls.2018.00039.

    Article  Google Scholar 

  31. Giannoudis, P. V., C. Tzioupis, A. Papathanassopoulos, O. Obakponovwe, and C. Roberts. Articular step-off and risk of post-traumatic osteoarthritis. Evidence today. Injury 41:986–995, 2010.

    CAS  PubMed  Google Scholar 

  32. Gosling, T., R. Westphal, J. Faulstich, K. Sommer, F. Wahl, C. Krettek, and T. Hufner. Forces and torques during fracture reduction: intraoperative measurements in the femur. J. Orthop. Res. 24:333–338, 2006.

    PubMed  Google Scholar 

  33. Gosling, T., R. Westphal, T. Hufner, J. Faulstich, M. Kfuri, Jr, F. Wahl, and C. Krettek. Robot-assisted fracture reduction: a preliminary study in the femur shaft. Med. Biol. Eng. Comput. 43:115–120, 2005.

    CAS  PubMed  Google Scholar 

  34. Graham, A., S. Xie, K. Aw, P. Xu, and S. Mukherjee. Robotic long bone fracture reduction. In: Medical Robotics, edited by V. Bozovic. London: IntechOpen, 2008, pp. 2820–2838.

    Google Scholar 

  35. Graham, A. E., S. Q. Xie, K. C. Aw, S. Mukherjee, and W. L. Xu. Bone-muscle interaction of the fractured femur. J. Orthop. Res. 26:1159–1165, 2008.

    PubMed  Google Scholar 

  36. Graham, A. E., S. Q. Xie, K. C. Aw, W. L. Xu, and S. Mukherjee. Design of a parallel long bone fracture reduction robot with planning treatment tool. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006, pp. 1255–1260.

  37. Gregorio, R. D., and V. Parenti-Castelli. Fixation devices for long bone fracture reduction: an overview and new suggestions. J. Intell. Robot. Syst. 34:265–278, 2002.

    Google Scholar 

  38. Gregorio, R. D., and V. Parenti-Castelli. Kinematics of a six-dof fixation device for long-bone fracture reduction. J. Robot. Syst. 18:715–722, 2001.

    Google Scholar 

  39. Grutzner, P. A., F. Langlotz, G. Zheng, J. von Recum, C. Keil, L. P. Nolte, A. Wentzensen, and K. Wendl. Computer-assisted LISS plate osteosynthesis of proximal tibia fractures: feasibility study and first clinical results. Comput. Aided Surg. 10:141–149, 2005.

    PubMed  Google Scholar 

  40. Grutzner, P. A., and N. Suhm. Computer aided long bone fracture treatment. Injury 35(Suppl 1):a57–a64, 2004. https://doi.org/10.1016/j.injury.2004.05.011.

    Article  Google Scholar 

  41. Hofstetter, R., M. Slomczykowski, C. Krettek, G. Koppen, M. Sati, and L. P. Nolte. Computer-assisted fluoroscopy-based reduction of femoral fractures and antetorsion correction. Comput. Aided Surg. 5:311–325, 2000.

    CAS  PubMed  Google Scholar 

  42. Hooper, J., E. Tsiridis, J. E. Feng, R. Schwarzkopf, D. Waren, W. J. Long, L. Poultsides, and W. Macaulay. Virtual reality simulation facilitates resident training in total hip arthroplasty: a randomized controlled trial. J. Arthroplast. 1:1–20, 2019. https://doi.org/10.1016/j.arth.2019.04.002.

    Article  Google Scholar 

  43. Hu, L., J. Zhang, C. Li, Y. Wang, Y. Yang, P. Tang, L. Fang, L. Zhang, H. Du, and L. Wang. A femur fracture reduction method based on anatomy of the contralateral side. Comput. Biol. Med. 43:840–846, 2013.

    PubMed  Google Scholar 

  44. Hufner, T., T. Pohlemann, S. Tarte, A. Gansslen, M. S. M. Citak, N. Bazak, U. Culemann, L. P. Nolte, and C. Krettek. Computer-assisted fracture reduction: novel method for analysis of accuracy. Comput. Aided Surg. 6:153–159, 2001.

    CAS  PubMed  Google Scholar 

  45. Hufner, T., T. Pohlemann, S. Tarte, A. Gansslen, J. Geerling, N. Bazak, M. Citak, L. P. Nolte, and C. Krettek. Computer-assisted fracture reduction of pelvic ring fractures: an in vitro study. Clin. Orthop. Relat. Res. 399:231–239, 2002.

    Google Scholar 

  46. Hung, S. S., and M. Y. Lee. Functional assessment of a surgical robot for reduction of lower limb fractures. Int. J. Med. Robot. Comput. Assist. Surg. 6:413–421, 2010.

    Google Scholar 

  47. Jacofsky, D. J., and M. Allen. Robotics in arthroplasty: a comprehensive review. J. Arthroplast. 31:2353–2363, 2016.

    Google Scholar 

  48. Joseph, J. R., B. W. Smith, X. Liu, and P. Park. Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg. Focus 42:E2, 2017. https://doi.org/10.3171/2017.2.FOCUS16544.

    Article  PubMed  Google Scholar 

  49. Joskowicz, L., C. Milgrom, A. Simkin, L. Tockus, and Z. Yaniv. FRACAS: a system for computer-aided image-guided long bone fracture surgery. Comput. Aided Surg. 3:271–288, 1998.

    CAS  PubMed  Google Scholar 

  50. Joung, S., H. Kamon, H. Liao, J. Iwaki, T. Nakazawa, M. Mitsuishi, Y. Nakajima, T. Koyama, N. Sugano, Y. Maeda, M. Bessho, S. Ohashi, T. Matsumoto, I. Ohnishi, and I. Sakuma. A robot assisted hip fracture reduction with a navigation system. Med. Image Comput. Comput. Assist. Interv. 11:501–508, 2008.

    PubMed  Google Scholar 

  51. Joung, S., H. Liao, E. Kobayashi, M. Mitsuishi, Y. Nakajima, N. Sugano, M. Bessho, S. Ohashi, T. Matsumoto, I. Ohnishi, and I. Sakuma. Hazard analysis of fracture-reduction robot and its application to safety design of fracture-reduction assisting robotic system. In: 2010 IEEE International Conference on Robotics and Automation. IEEE, 2010, pp. 1554–1561.

  52. Kara, A., H. Celik, A. Seker, O. Karakoyun, R. Armagan, E. Kuyucu, and M. Erdil. Treatment of open fractures with a computer-assisted external fixator system without the use of fluoroscopy. J. Orthop. Surg. Res. 11:51, 2016. https://doi.org/10.1186/s13018-016-0379-9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Keast-Butler, O., M. J. Lutz, M. Angelini, N. Lash, D. Pearce, M. Crookshank, R. Zdero, and E. H. Schemitsch. Computer navigation in the reduction and fixation of femoral shaft fractures: a randomized control study. Injury 43:749–756, 2012.

    PubMed  Google Scholar 

  54. Khoury, A., C. M. Whyne, M. Daly, D. Moseley, G. Bootsma, T. Skrinskas, J. Siewerdsen, and D. Jaffray. Intraoperative cone-beam CT for correction of periaxial malrotation of the femoral shaft: a surface-matching approach. Med. Phys. 34:1380–1387, 2007.

    PubMed  Google Scholar 

  55. Kim, W. Y., and S. Y. Ko. Hands-on robot-assisted fracture reduction system guided by a linear guidance constraints controller using a pre-operatively planned goal pose. Int. J. Med. Robot. Comput. Assist. Surg. 15:e1967, 2018. https://doi.org/10.1002/rcs.1967.

    Article  Google Scholar 

  56. Kim, W. Y., S. Y. Ko, J.-O. Park, and S. Park. 6-DOF force feedback control of robot-assisted bone fracture reduction system using double F/T sensors and adjustable admittances to protect bones against damage. Mechatronics 35:136–147, 2016.

    Google Scholar 

  57. Kim, Y. H., N. Inoue, and E. Y. Chao. Kinematic simulation of fracture reduction and bone deformity correction under unilateral external fixation. J. Biomech. 35:1047–1058, 2002.

    PubMed  Google Scholar 

  58. Kim, Y. H., and S.-G. Lee. Computer and robotic model of external fixation system for fracture treatment. In: International Conference on Computational Science. Springer, 2004, pp. 1081–1087.

  59. Kim, Y. H., and S.-G. Lee. Prototype of external fixation robot for fracture surgery. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, 2006, pp. 198–200.

  60. Konan, S., C. Maden, and A. Robbins. Robotic surgery in hip and knee arthroplasty. Br. J. Hosp. Med. 78:378–384, 2017.

    Google Scholar 

  61. Kong, M., Z. Du, L. Sun, L. Fu, Z. Jia, and D. Wu. A robot-assisted orthopedic telesurgery system. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2005, pp. 97–101.

  62. Koo, T. K., E. Y. Chao, and A. F. Mak. Development and validation of a new approach for computer-aided long bone fracture reduction using unilateral external fixator. J. Biomech. 39:2104–2112, 2006.

    CAS  PubMed  Google Scholar 

  63. Koo, T. K., and A. F. Mak. A knowledge-based computer-aided system for closed diaphyseal fracture reduction. Clin. Biomech. 22:884–893, 2007.

    Google Scholar 

  64. Koo, T. K., and M. O. Papuga. A computer aided method for closed reduction of diaphyseal tibial fracture using projection images: a feasibility study. Comput. Aided Surg. 14:45–57, 2009.

    PubMed  Google Scholar 

  65. Koons, G. L., K. Schenke-Layland, and A. G. Mikos. Why, when, who, what, how, and where for trainees writing literature review articles. Ann. Biomed. Eng. 1:1–120, 2019. https://doi.org/10.1007/s10439-019-02290-5.

    Article  Google Scholar 

  66. Lee, H., S. Han, S. Park, J.-O. Park, and S. Y. Ko. Design and evaluation of a navigation system for minimally invasive femur fracture reduction using radiographic and reconstructed 3D CT image model. In: ISR 2013. INFORMS, 2013, pp. 279–282.

  67. Lee, S. C., B. Fuerst, K. Tateno, A. Johnson, J. Fotouhi, G. Osgood, F. Tombari, and N. Navab. Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery. Healthc. Technol. Lett. 4:168–173, 2017.

    PubMed  PubMed Central  Google Scholar 

  68. Leloup, T., W. El Kazzi, F. Schuind, and N. Warzee. Conception of a navigation system controlling diaphyseal fracture reduction treated with external fixation. Int. J. Med. Robot. Comput. Assist. Surg. 5:99–109, 2009.

    CAS  Google Scholar 

  69. Li, C., T. Wang, L. Hu, P. Tang, L. Wang, L. Zhang, N. Guo, and Y. Tan. A novel master–slave teleoperation robot system for diaphyseal fracture reduction: a preliminary study. Comput. Assist. Surg. 21:162–167, 2016.

    Google Scholar 

  70. Li, C., T. Wang, L. Hu, L. Zhang, H. Du, L. Wang, S. Luan, and P. Tang. Accuracy Analysis of a Robot System for Closed Diaphyseal Fracture Reduction. Int. J. Adv. Robot. Syst. 11:169, 2014. https://doi.org/10.5772/59184.

    Article  CAS  Google Scholar 

  71. Li, C., T. Wang, L. Hu, L. Zhang, H. Du, L. Zhao, L. Wang, and P. Tang. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction. Proc. Inst. Mech. Eng. H 229:629–637, 2015.

    PubMed  Google Scholar 

  72. Li, C., T. Wang, L. Hu, L. Zhang, Y. Zhao, H. Du, L. Wang, and P. Tang. Robot-musculoskeletal dynamic biomechanical model in robot-assisted diaphyseal fracture reduction. Bio-Med. Mater. Eng. 26(Suppl 1):S365–374, 2015. https://doi.org/10.3233/bme-151324.

    Article  Google Scholar 

  73. Luo, X., K. Mori, and T. M. Peters. Advanced endoscopic navigation: surgical big data, methodology, and applications. Annu. Rev. Biomed. Eng. 20:221–251, 2018.

    CAS  PubMed  Google Scholar 

  74. Ma, L., Z. Zhao, B. Zhang, W. Jiang, L. Fu, X. Zhang, and H. Liao. Three-dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking. Int. J. Med. Robot. Comput. Assist. Surg. 14:e1909, 2018. https://doi.org/10.1002/rcs.1909.

    Article  Google Scholar 

  75. Maeda, Y., N. Sugano, M. Saito, K. Yonenobu, I. Sakuma, Y. Nakajima, S. Warisawa, and M. Mitsuishi. Robot-assisted femoral fracture reduction: preliminary study in patients and healthy volunteers. Comput. Aided Surg. 13:148–156, 2008.

    PubMed  Google Scholar 

  76. Majidifakhr, K., S. Kazemirad, and F. Farahmand. Robotic assisted reduction of femoral shaft fractures using Stewart platform. Stud. Health Technol. Inform. 142:177–179, 2009.

    PubMed  Google Scholar 

  77. Mitsuishi, M., N. Sugita, S. Warisawa, T. Ishizuka, T. Nakazawa, N. Sugano, K. Yenenobu, and I. Sakuma. Development of a computer-integrated femoral head fracture reduction system. In: IEEE International Conference on Mechatronics, 2005. ICM ‘05. IEEE, 2005, pp. 834–839.

  78. Mosheiff, R., Y. Weil, E. Peleg, and M. Liebergall. Computerised navigation for closed reduction during femoral intramedullary nailing. Injury 36:866–870, 2005.

    PubMed  Google Scholar 

  79. Mukherjee, S., M. Rendsburg, and W. L. Xu. Surgeon-instructed, image-guided and robot-assisted long bone fractures reduction. In: 1st International Conference on Sensing Technology. IEEE, 2005, pp. 78–84.

  80. Nakajima, Y., T. Tashiro, T. Okada, Y. Sato, N. Sugano, M. Saito, K. Yonenobu, H. Yoshikawa, T. Ochi, and S. Tamura. Computer-assisted fracture reduction of proximal femur using preoperative CT data and intraoperative fluoroscopic images. Int. Congr. Ser. 1268:620–625, 2004.

    Google Scholar 

  81. Nakajima, Y., T. Tashiro, N. Sugano, K. Yonenobu, T. Koyama, Y. Maeda, Y. Tamura, M. Saito, S. Tamura, M. Mitsuishi, N. Sugita, I. Sakuma, T. Ochi, and Y. Matsumoto. Fluoroscopic bone fragment tracking for surgical navigation in femur fracture reduction by incorporating optical tracking of hip joint rotation center. IEEE Trans. Biomed. Eng. 54:1703–1706, 2007.

    PubMed  Google Scholar 

  82. Oszwald, M., R. Westphal, J. Bredow, A. Calafi, T. Hufner, F. Wahl, C. Krettek, and T. Gosling. Robot-assisted fracture reduction using three-dimensional intraoperative fracture visualization: an experimental study on human cadaver femora. J. Orthop. Res. 28:1240–1244, 2010.

    PubMed  Google Scholar 

  83. Oszwald, M., R. Westphal, J. Bredow, R. Gaulke, P. F. O’Loughlin, T. Huefner, F. Wahl, C. Krettek, and T. Goesling. 3D visualized robot assisted reduction of femoral shaft fractures: evaluation in exposed cadaveric bones. Technol. Health Care 17:337–343, 2009.

    PubMed  Google Scholar 

  84. Oszwald, M., R. Westphal, A. Calafi, R. Stier, C. W. Muller, R. Gaulke, F. Wahl, C. Krettek, and T. Gosling. A standardized fracture reduction model for long bones—implication and evaluation in the femur. Technol. Health Care 18:387–391, 2010.

    PubMed  Google Scholar 

  85. Oszwald, M., R. Westphal, D. Klepzig, A. Khalafi, R. Gaulke, C. W. Muller, F. Wahl, C. Krettek, and T. Gosling. Robotized access to the medullary cavity for intramedullary nailing of the femur. Technol. Health Care 18:173–180, 2010.

    PubMed  Google Scholar 

  86. Panzica, M., E. M. Suero, R. Westphal, M. Citak, E. Liodakis, N. Hawi, M. Petri, C. Krettek, and T. Stuebig. Robotic distal locking of intramedullary nailing: technical description and cadaveric testing. Int. J. Med. Robot. Comput. Assist. Surg. 13:e1831, 2017. https://doi.org/10.1002/rcs.1831.

    Article  Google Scholar 

  87. Pedersen, P., H. Palm, C. Ringsted, and L. Konge. Virtual-reality simulation to assess performance in hip fracture surgery. Acta Orthop. 85:403–407, 2014.

    PubMed  PubMed Central  Google Scholar 

  88. Pei, B., G. Zhu, Y. Wang, X. Chen, Z. Sun, S. Shi, K. Xu, and W. Zhang. Motion sensing based control method for bone fracture reduction robot. In: International Conference on Biological Information and Biomedical Engineering. IEEE, 2018, pp. 1–7.

  89. Qiao, F., D. Li, Z. Jin, Y. Gao, T. Zhou, J. He, and L. Cheng. Application of 3D printed customized external fixator in fracture reduction. Injury 46:1150–1155, 2015.

    PubMed  Google Scholar 

  90. Qiao, F., D. Li, Z. Jin, D. Hao, Y. Liao, and S. Gong. A novel combination of computer-assisted reduction technique and three dimensional printed patient-specific external fixator for treatment of tibial fractures. Int. Orthop. 40:835–841, 2016.

    PubMed  Google Scholar 

  91. Raabe, D., S. Dogramadzi, and R. Atkins. Semi-automatic percutaneous reduction of intra-articular joint fractures—an initial analysis. In: 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 2679–2684. IEEE.

  92. Ren, H., and M. Q.-H. Meng. Investigation of navigation and robotic system for computer assisted orthopedic surgery: state-of-art and preliminary results. Int. J. Inf. Acquis. 06:171–179, 2009.

    Google Scholar 

  93. Ren, H., M. Q. Meng, L. Qi, and Y. Fan. A technical review on the orthopedic compliant robotic arms. In: 2009 International Conference on Information and Automation. IEEE, 2009, pp. 512–515.

  94. Ron, O., L. Joskowicz, C. Milgrom, and A. Simkin. Computer-based periaxial rotation measurement for aligning fractured femur fragments from CT: a feasibility study. Comput. Aided Surg. 7:332–341, 2002.

    PubMed  Google Scholar 

  95. Ruihua, Y., and C. Yonghua. Development of a six degree of freedom (DOF) hybrid robot for femur shaft fracture reduction. In: 2008 IEEE International Conference on Robotics and Biomimetics. IEEE, 2009, pp. 306–311.

  96. Seide, K., M. Faschingbauer, M. E. Wenzl, N. Weinrich, and C. Juergens. A hexapod robot external fixator for computer assisted fracture reduction and deformity correction. Int. J. Med. Robot. Comput. Assist. Surg. 1:64–69, 2004.

    CAS  Google Scholar 

  97. Seide, K., N. Weinrich, M. E. Wenzl, D. Wolter, and C. Jurgens. Three-dimensional load measurements in an external fixator. J. Biomech. 37:1361–1369, 2004.

    CAS  PubMed  Google Scholar 

  98. Seide, K., J. Wolnack, N. Weinrich, and C. Jurgens. Theory and software of the hexapod external fixator. Biomed. Eng. 47:326–333, 2002.

    CAS  Google Scholar 

  99. Seide, K., and D. Wolter. Universal 3-dimensional correction and reposition with the ring fixator using the hexapod configuration. Unfallchirurg 99:422–424, 1996.

    CAS  PubMed  Google Scholar 

  100. Seide, K., D. Wolter, and H. R. Kortmann. Fracture reduction and deformity correction with the hexapod Ilizarov fixator. Clin. Orthop. Relat. Res. 363:186–195, 1999.

    Google Scholar 

  101. Sen, S., T. Ando, E. Kobayashi, H. Miyamoto, S. Ohashi, S. Tanaka, S. Joung, I. Park, and I. Sakuma. Development of femoral bone fracture model simulating muscular contraction force by pneumatic rubber actuator. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2014, pp. 6872–6875.

  102. Suero, E. M., T. Hartung, R. Westphal, N. Hawi, E. Liodakis, M. Citak, C. Krettek, and T. Stuebig. Improving the human-robot interface for telemanipulated robotic long bone fracture reduction: Joystick device vs haptic manipulator. Int. J. Med. Robot. Comput. Assist. Surg. 14:e1863, 2018. https://doi.org/10.1002/rcs.1863.

    Article  Google Scholar 

  103. Suero, E. M., R. Westphal, M. Citak, V. Stueber, U. Lueke, C. Krettek, and T. Stuebig. Repeatability and reproducibility of a telemanipulated fracture reduction system. J. Robot. Surg. 12:409–416, 2018.

    PubMed  Google Scholar 

  104. Sun, X., Q. Zhu, X. Wang, and B. Liang. A remote control robotic surgical system for femur shaft fracture reduction. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2015, pp. 1649–1653.

  105. Takao, M., T. Nishii, T. Sakai, H. Yoshikawa, and N. Sugano. Iliosacral screw insertion using CT-3D-fluoroscopy matching navigation. Injury 45:988–994, 2014.

    PubMed  Google Scholar 

  106. Tang, P., L. Hu, H. Du, M. Gong, and L. Zhang. Novel 3D hexapod computer-assisted orthopaedic surgery system for closed diaphyseal fracture reduction. Int. J. Med. Robot. Comput. Assist. Surg. 8:17–24, 2012.

    Google Scholar 

  107. Tockus, L., L. Joskowicz, A. Simkin, and C. Milgrom. Computer-aided image-guided bone fracture surgery: modeling, visualization, and preoperative planning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 1998, pp. 29–38.

  108. van der List, J. P., H. Chawla, L. Joskowicz, and A. D. Pearle. Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: a systematic review with meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 24:3482–3495, 2016.

    PubMed  Google Scholar 

  109. van Duren, B. H., K. Sugand, R. Wescott, R. Carrington, and A. Hart. Augmented reality fluoroscopy simulation of the guide-wire insertion in DHS surgery: a proof of concept study. Med. Eng. Phys. 55:52–59, 2018.

    PubMed  Google Scholar 

  110. Vibert, B., R. Pailhe, V. Morin, B. Rubens-Duval, and D. Saragaglia. Navigation for lower limb alignment during internal fixation of complex tibial-plateau fractures. Orthop. Traumatol. Surg. Res. 104:491–496, 2018.

    CAS  PubMed  Google Scholar 

  111. Viceconti, M., A. O. Andrisano, A. Toni, and A. Giunti. Automatic fracture reduction with a computer-controlled external fixator. Med. Eng. Phys. 16:143–149, 1994.

    CAS  PubMed  Google Scholar 

  112. Viceconti, M., A. Sudanese, A. Toni, and A. Giunti. A software simulation of tibial fracture reduction with external fixator. Comput. Methods Programs Biomed. 40:89–94, 1993.

    CAS  PubMed  Google Scholar 

  113. von Keudell, A., K. Shoji, M. Nasr, R. Lucas, R. Dolan, and M. J. Weaver. Treatment options for distal femur fractures. J. Orthop. Trauma 30(Suppl 2):S25–27, 2016. https://doi.org/10.1097/bot.0000000000000621.

    Article  Google Scholar 

  114. Wang, J., W. Han, and H. Lin. Femoral fracture reduction with a parallel manipulator robot on a traction table. Int. J. Med. Robot. Comput. Assist. Surg. 9:464–471, 2013.

    Google Scholar 

  115. Wang, J. Q., C. P. Zhao, Y. G. Su, L. Zhou, L. Hu, T. M. Wang, and M. Y. Wang. Computer-assisted navigation systems for insertion of cannulated screws in femoral neck fractures: a comparison of bi-planar robot navigation with optoelectronic navigation in a Synbone hip model trial. Chin. Med. J. 124:3906–3911, 2011.

    PubMed  Google Scholar 

  116. Wang, M., L. Sun, Z. Du, and Z. Jia. The design and implementation of virtual system for the robot-assisted setting-bone surgery. In: 2006 Bio Micro and Nanosystems Conference. IEEE, 2006, pp. 53–57.

  117. Wang, S., Y. Chen, R. Ye, and W. Yau. Kinematic analysis in robot assisted femur fracture reduction: Fuzzy logic approach. In: 26th Southern Biomedical Engineering Conference SBEC 2010, April 30–May 2, 2010, College Park, Maryland, USA, edited by K. E. Herold, J. Vossoughi and W. E. Bentley. Berlin: Springer, 2010, pp. 118–121.

  118. Wang, S., C. Yonghua, and P. Zhang. Control simulation of a six DOF parallel-serial robot for femur fracture reduction. In: 2009 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems. IEEE, 2009, pp. 330–335.

  119. Wang, T., C. Li, L. Hu, P. Tang, L. Zhang, H. Du, S. Luan, L. Wang, Y. Tan, and C. Peng. A removable hybrid robot system for long bone fracture reduction. Bio-Med. Mater. Eng. 24:501–509, 2014.

    Google Scholar 

  120. Warisawa, S., T. Ishizuka, M. Mitsuishi, N. Sugano, K. Yonenobu, and T. Nakazawa. Development of a femur fracture reduction robot. In: IEEE International Conference on Robotics and Automation. IEEE, 2004, pp. 3999–4004.

  121. Weil, Y. A., M. J. Gardner, D. L. Helfet, and A. D. Pearle. Computer navigation allows for accurate reduction of femoral fractures. Clin. Orthop. Relat. Res. 460:185–191, 2007.

    PubMed  Google Scholar 

  122. Weil, Y. A., A. Greenberg, A. Khoury, R. Mosheiff, and M. Liebergall. Computerized navigation for length and rotation control in femoral fractures: a preliminary clinical study. J. Orthop. Trauma 28:e27–33, 2014. https://doi.org/10.1097/BOT.0b013e31829aaefb.

    Article  PubMed  Google Scholar 

  123. Weil, Y. A., M. Liebergall, R. Mosheiff, D. L. Helfet, and A. D. Pearle. Long bone fracture reduction using a fluoroscopy-based navigation system: a feasibility and accuracy study. Comput. Aided Surg. 12:295–302, 2007.

    PubMed  Google Scholar 

  124. Westphal, R., T. Gösling, M. Oszwald, J. Bredow, D. Klepzig, S. Winkelbach, T. Hüfner, C. Krettek, and F. M. Wahl. Robot Assisted Fracture Reduction. In: Experimental Robotics, edited by O. Khatib, V. Kumar, and D. Rus. Heidelberg: Springer, 2006, pp. 153–163.

    Google Scholar 

  125. Westphal, R., S. Winkelbach, T. Gösling, M. Oszwald, T. Hüfner, C. Krettek, and F. M. Wahl. Automated robot assisted fracture reduction. In: Advances in Robotics Research: Theory, Implementation, Application, edited by T. Kröger and F. M. Wahl. Berlin: Springer, 2009, pp. 251–262.

    Google Scholar 

  126. Westphal, R., S. Winkelbach, T. Gösling, M. Oszwald, T. Huefner, C. Krettek, and F. Wahl. Telemanipulated long bone fracture reduction. In: Medical Robotics, edited by V. Bozovic. London: IntechOpen, 2008, pp. 2392–2412.

    Google Scholar 

  127. Westphal, R., S. Winkelbach, T. Gosling, T. Hufner, J. Faulstich, P. Martin, C. Krettek, and F. M. Wahl. A surgical telemanipulator for femur shaft fracture reduction. Int. J. Med. Robot. Comput. Assist. Surg. 2:238–250, 2006.

    CAS  Google Scholar 

  128. Westphal, R., S. Winkelbach, F. Wahl, T. Gösling, M. Oszwald, T. Hüfner, and C. Krettek. Robot-assisted long bone fracture reduction. Int. J. Robot. Res. 28:1259–1278, 2009.

    Google Scholar 

  129. Wilharm, A., F. Gras, S. Rausch, R. Linder, I. Marintschev, G. O. Hofmann, and T. Muckley. Navigation in femoral-shaft fractures—from lab tests to clinical routine. Injury 42:1346–1352, 2011.

    CAS  PubMed  Google Scholar 

  130. Wu, X., R. Liu, J. Yu, S. Xu, C. Yang, Z. Shao, S. Yang, and Z. Ye. Mixed reality technology-assisted orthopedics surgery navigation. Surg. Innov. 25:304–305, 2018.

    PubMed  Google Scholar 

  131. Ye, R., and Y. Chen. Path planning for robot assisted femur shaft fracture reduction: a preliminary investigation. In: 2009 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems. IEEE, 2009, pp. 113–117.

  132. Ye, R., Y. H. Chen, and W. P. Yau. A simple and novel hybrid robotic system for robot-assisted femur fracture reduction. Adv. Robot. 26:83–104, 2012.

    Google Scholar 

  133. Yildirim, A. O., E. Aksahin, B. Sakman, Y. A. Kati, S. Akti, O. Dogan, A. Ucaner, and A. Bicimoglu. The effect of rotational deformity on patellofemoral parameters following the treatment of femoral shaft fracture. Arch. Orthop. Trauma Surg. 133:641–648, 2013.

    PubMed  Google Scholar 

  134. Zheng, G., X. Dong, and P. A. Gruetzner. Reality-augmented virtual fluoroscopy for computer-assisted diaphyseal long bone fracture osteosynthesis: a novel technique and feasibility study results. Proc. Inst. Mech. Eng. H 222:101–115, 2008.

    CAS  PubMed  Google Scholar 

  135. Zheng, G., X. Dong, P. A. Grutzner, and L. P. Nolte. Automated detection and segmentation of cylindrical fragments from calibrated C-arm images for long bone fracture reduction. Comput. Methods Programs Biomed. 87:1–11, 2007.

    PubMed  Google Scholar 

  136. Zhi-jiang, D., K. Min-xiu, F. Li-xin, and S. Li-ning. A novel fluoroscopy-guided robot-assisted orthopaedic surgery system. In: IEEE International Conference on Robotics and Biomimetics. IEEE, 2006, pp. 1622–1627.

  137. Zhu, Q., B. Liang, X. Wang, X. Sun, and L. Wang. Minimally invasive treatment of displaced femoral shaft fractures with a teleoperated robot-assisted surgical system. Injury 48:2253–2259, 2017.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Key R&D Program of China (2017YFC0110601) and the Innovation Program in Military Medicine of Chinese PLA (16CXZ043).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Cheng Zhang or Pei-Fu Tang.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, JX., Li, C., Ren, H. et al. Evolution and Current Applications of Robot-Assisted Fracture Reduction: A Comprehensive Review. Ann Biomed Eng 48, 203–224 (2020). https://doi.org/10.1007/s10439-019-02332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02332-y

Keywords

Navigation