Skip to main content
Log in

Kinematics of the Spine Under Healthy and Degenerative Conditions: A Systematic Review

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Understanding spinal kinematics is essential, not only for the comprehension and diagnosis of spinal diseases, but also for improving modern tools and software. The sheer volume and complexity of now available information can be overwhelming. We aimed to distil it into a form that facilitates comparison among diverse studies addressing spinal kinematics under healthy and degenerative conditions. We specifically aimed to define a baseline definition of the spectrum of normal spinal kinematics that in turn allows a comparable definition of kinematics of the degenerative lumbar spine. The considered data was obtained by a systematic MEDLINE search including studies on angular/translational segmental motion contribution, range of motion, coupling and center of rotation. As for degenerative conditions, we collected publications on disc degeneration, facet joint osteoarthritis, facet joint tropism, spondylolisthesis, ligament degeneration and paraspinal muscle degeneration. While we could demonstrate repeating motion patterns for some topics, agreement in other fields is limited due to methodological variances and small sample sizes, particularly in publications with highly accurate but complex techniques. Besides, the high frequency of concurrent degenerative processes complicates the association between diseases and subsequent kinematical changes. Despite several substantial gaps, we stand at the precipice of technological breakthroughs that can power future large-scale studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

AOR:

Axis of rotation

AR:

Axial rotation

COR:

Center of rotation

DD:

Disc degeneration

FE:

Flexion/extension

FJOA:

Facet joint osteoarthritis

FJT:

Facet joint tropism

FU:

Functional unit

IL:

Interspinous ligament

LB:

Lateral bending

LD:

Ligament degeneration

LF:

Ligamentum flavum

LFH:

Ligamentum flavum hypertrophy

NZ:

Neutral zone

OA:

Osteoarthritis

PMD:

Paraspinal muscle degeneration

ROM:

Range of motion

SL:

Spondylolisthesis

References

  1. Abum, K., M. M. Panjabi, K. M. Kramer, J. Duranceau, T. Oxland, and J. J. Crisco. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine (Phila. Pa. 1976) 15:1142–1147, 1990.

    Article  Google Scholar 

  2. Adams, M. A., and W. C. Hutton. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J. Bone Jt Surg. Br. 62-B:358–362, 1980.

    Article  Google Scholar 

  3. Ahmadi, A., N. Maroufi, H. Behtash, H. Zekavat, and M. Parnianpour. Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy. Eur. Spine J. 18:1677–1685, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahmed, A. M., N. A. Duncan, and D. L. Burke. The effect of facet geometry on the axial torque-rotation response of lumbar motion segments. Spine (Phila. Pa. 1976) 15:391–401, 1990.

    Article  CAS  Google Scholar 

  5. Aiyangar, A., L. Zheng, W. Anderst, and X. Zhang. Apportionment of lumbar L2–S1 rotation across individual motion segments during a dynamic lifting task. J. Biomech. 48:3709–3715, 2015.

    Article  PubMed  Google Scholar 

  6. Aiyangar, A., L. Zheng, W. Anderst, and X. Zhang. Instantaneous centers of rotation for lumbar segmental flexion–extension in vivo. J. Biomech. 2016. https://doi.org/10.1016/j.jbiomech.2016.12.021.

    Article  PubMed  Google Scholar 

  7. Aiyangar, A. K., L. Zheng, S. Tashman, W. J. Anderst, and X. Zhang. Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging. J. Biomech. Eng. 136:011004, 2014.

    Article  PubMed  Google Scholar 

  8. Aiyangar, A. K., et al. Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging. J. Biomech. Eng. 136:1–9, 2016.

    Google Scholar 

  9. Axelsson, P., R. Johnsson, and B. Stromqvist. Is there increased intervertebral mobility in isthmic adult spondylolisthesis? A matched comparative study using Roentgen stereophotogrammetry. Spine (Phila. Pa. 1976) 25:1701–1703, 2000.

    Article  CAS  Google Scholar 

  10. Basques, B. A., A. A. Espinoza Orías, G. D. Shifflett, M. P. Fice, G. B. Andersson, H. S. An, and N. Inoue. The kinematics and spondylosis of the lumbar spine vary depending on the levels of motion segments in individuals with low back pain. Spine (Phila. Pa. 1976) 42:E767–E774, 2017.

    Article  Google Scholar 

  11. Benneker, L. M., P. F. Heini, S. E. Anderson, M. Alini, and K. Ito. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur. Spine J. 14:27–35, 2005.

    Article  PubMed  Google Scholar 

  12. Bergknut, N., G. Grinwis, E. Pickee, E. Auriemma, A. S. Lagerstedt, R. Hagman, H. A. W. Hazewinkel, and B. P. Meij. Reliability of macroscopic grading of intervertebral disk degeneration in dogs by use of the Thompson system and comparison with low-field magnetic resonance imaging findings. Am. J. Vet. Res. 72:899–904, 2011.

    Article  PubMed  Google Scholar 

  13. Blankenbaker, D. G., V. M. Haughton, B. P. Rogers, M. E. Meyerand, and J. P. Fine. Axial rotation of the lumbar spinal motion segments correlated with concordant pain on discography: a preliminary study. Am. J. Roentgenol. 186:795–799, 2006.

    Article  Google Scholar 

  14. Boden, S. D., and S. W. Wiesel. Lumbosacral segmental motion in normal individuals. Have we been measuring instability properly? Spine (Phila. Pa. 1976) 15:571–576, 1990.

    Article  CAS  Google Scholar 

  15. Brown, S. H. M., D. E. Gregory, J. A. Carr, S. R. Ward, K. Masuda, and R. L. Lieber. ISSLS prize winner: adaptations to the multifidus muscle in response to experimentally induced intervertebral disc degeneration. Spine (Phila. Pa. 1976) 36:1728–1736, 2011.

    Article  Google Scholar 

  16. Butler, D., J. H. Trafimow, G. B. J. Andersson, T. W. McNeill, and M. S. Huckman. Discs degenerate before facets. Spine (Phila. Pa. 1976) 15:111–113, 1990.

    Article  CAS  Google Scholar 

  17. Cooley, J. R., B. F. Walker, E. M. Ardakani, T. S. Jensen, and J. J. Hebert. Relationships between paraspinal muscle morphology and neurocompressive conditions of the lumbar spine: a systematic review with meta-analysis. BMC Musculoskelet. Disord. 19:1–21, 2018.

    Article  Google Scholar 

  18. Cossette, J. W., H. F. Farfan, G. H. Robertson, and R. V. Wells. The instantaneous center of rotation of the third lumbar intervertebral joint. J. Biomech. 4:149–153, 1971.

    Article  CAS  PubMed  Google Scholar 

  19. Crawford, H. J., and G. A. Jull. The influence of thoracic posture and movement on range of arm elevation. Physiother. Theory Pract. 9:143–148, 1993.

    Article  Google Scholar 

  20. Cyron, B. M., and W. C. Hutton. Articular tropism and stability of the lumbar spine. Spine (Phila. Pa. 1976) 5:168–172, 1980.

    Article  CAS  Google Scholar 

  21. Dimnet, J., A. Pasquet, M. H. Krag, and M. M. Panjabi. Cervical spine motion in the sagittal plane: Kinematic and geometric parameters. J. Biomech. 15:959–969, 1982.

    Article  CAS  PubMed  Google Scholar 

  22. Duda, G. N., M. Heller, J. Albinger, O. Schulz, E. Schneider, and L. Claes. Influence of muscle forces on femoral strain distribution. J. Biomech. 31:841–846, 1998.

    Article  CAS  PubMed  Google Scholar 

  23. Dvorak, J., M. M. Panjabi, D. G. Chang, R. Theiler, and D. Grob. Functional radiographic diagnosis of the lumbar spine. Flexion–extension and lateral bending. Spine (Phila. Pa. 1976) 16:562–571, 1991.

    Article  CAS  Google Scholar 

  24. Dvořák, J., M. M. Panjabi, J. E. Novotny, D. G. Chang, and D. Grob. Clinical validation of functional flexion–extension Roentgenograms of the lumbar spine. Spine (Phila. Pa. 1976) 16:943–950, 1991.

    Article  Google Scholar 

  25. Eisenstein, S. M., and C. R. Parry. The lumbar facet arthrosis syndrome. Clinical presentation and articular surface changes. J. Bone Jt Surg. Br. 69:3–7, 1987.

    Article  CAS  Google Scholar 

  26. Farrance, I., and R. Frenkel. Uncertainty of measurement: a review of the rules for calculating uncertainty components through functional relationships. Clin. Biochem. Rev. 33:49–75, 2012.

    PubMed  PubMed Central  Google Scholar 

  27. Friberg, O. Instability in spondylolisthesis. Orthopedics 14:463–465, 1991.

    CAS  PubMed  Google Scholar 

  28. Frobin, W., P. Brinckmann, M. Kramer, and E. Hartwig. Height of lumbar discs measured from radiographs compared with degeneration and height classified from MR images. Eur. Radiol. 11:263–269, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Frobin, W., P. Brinckmann, G. Leivseth, M. Biggemann, and O. Reikeras. Precision measurement of segmental motion from flexion–extension radiographs of the lumbar spine. Clin. Biomech. 11:457–465, 1996.

    Article  CAS  Google Scholar 

  30. Frymoyeyr, J., A. Newberg, and M. Pope. Spine radiographs in patients with low back pain. J. Bone Jt Surg. Am. 66:1048–1055, 1984.

    Article  Google Scholar 

  31. Fujii, R., H. Sakaura, Y. Mukai, N. Hosono, T. Ishii, M. Iwasaki, H. Yoshikawa, and K. Sugamoto. Kinematics of the lumbar spine in trunk rotation: in vivo three-dimensional analysis using magnetic resonance imaging. Eur. Spine J. 16:1867–1874, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fujiwara, A., T. H. Lim, H. S. An, N. Tanaka, C. H. Jeon, G. B. J. Andersson, and V. M. Haughton. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine (Phila. Pa. 1976) 25:3036–3044, 2000.

    Article  CAS  Google Scholar 

  33. Fujiwara, A., K. Tamai, H. S. An, T. Kurihashi, T. H. Lim, H. Yoshida, and K. Saotome. The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. J. Spinal Disord. 13:444–450, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Fujiwara, A., K. Tamai, H. S. An, T.-H. Lim, H. Yoshida, A. Kurihashi, and K. Saotome. Orientation and osteoarthritis of the lumbar facet joint. Clin. Orthop. Relat. Res. 385:88–94, 2001.

    Article  Google Scholar 

  35. Fujiwara, A., K. Tamai, M. Yamato, H. S. An, H. Yoshida, K. Saotome, and A. Kurihashi. The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study. Eur. Spine J. 8:396–401, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Galbusera, F., M. Van Rijsbergen, K. Ito, J. M. Huyghe, M. Brayda-Bruno, and H. J. Wilke. Ageing and degenerative changes of the intervertebral disc and their impact on spinal flexibility. Eur. Spine J. 23:324–332, 2014.

    Google Scholar 

  37. Gertzbein, S. D., J. Seligman, R. Holtby, K. W. Chan, N. Ogston, A. Kapasouri, and M. Tile. Centrode characteristics of the lumbar spine as a function of segmental instability. 1986.

  38. Gertzbein, S. D., J. Seligman, R. Holtby, K. H. Chan, A. Kapasouri, M. Tile, and B. Cruickshank. Centrode patterns and segmental instability in degenerative disc disease. Spine (Phila. Pa. 1976) 10:257–261, 1985.

    Article  CAS  Google Scholar 

  39. Hadjipavlou, A. G., M. N. Tzermiadianos, N. Bogduk, and M. R. Zindrick. The pathophysiology of disc degeneration: a critical review. J. Bone Jt Surg. Br. 90:1261–1270, 2008.

    Article  CAS  Google Scholar 

  40. Haher, T. R., M. Bergman, M. O’Brien, W. T. Felmly, J. Choueka, D. Welin, G. Chow, and A. Vassiliou. The effect of the three columns of the spine on the instantaneous axis of rotation in flexion and extension. Spine (Phila. Pa. 1976) 16:S319, 1991.

    Article  Google Scholar 

  41. Haher, T. R., M. O’Brien, J. W. Dryer, R. Nucci, R. Zipnick, and D. J. Leone. The role of the lumbar facet joints in spinal stability. Spine (Phila. Pa. 1976) 19:2667–2670, 1994.

    Article  CAS  Google Scholar 

  42. Haher, T. R., M. O’Brien, W. T. Felmly, D. Welin, G. Perrier, J. Choueka, V. Devlin, A. Vassiliou, and G. Chow. Instantaneous axis of rotation as a function of the three columns of the spine. Spine (Phila. Pa. 1976) 17:S149–S154, 1992.

    Article  CAS  Google Scholar 

  43. Harada, M., K. Abumi, M. Ito, and K. Kaneda. Cineradiographic motion analysis of normal lumbar spine during forward and backward flexion. Spine (Phila. Pa. 1976) 25:1932–1937, 2000.

    Article  CAS  Google Scholar 

  44. Hasegewa, K., K. Kitahara, T. Hara, K. Takano, and H. Shimoda. Biomechanical evaluation of segmental instability in degenerative lumbar spondylolisthesis. Eur. Spine J. 18:465–470, 2009.

    Article  PubMed  Google Scholar 

  45. Hashemirad, F., B. Hatef, S. Jaberzadeh, and N. Ale Agha. Validity and reliability of skin markers for measurement of intersegmental mobility at L2–3 and L3–4 during lateral bending in healthy individuals: a fluoroscopy study. J. Bodyw. Mov. Ther. 17:46–52, 2013.

    Article  PubMed  Google Scholar 

  46. Haughton, V. M., B. Rogers, M. E. Meyerand, and D. K. Resnick. Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. Am. J. Neuroradiol. 23:1110–1116, 2002.

    PubMed  Google Scholar 

  47. Hayashi, T., M. D. Daubs, A. Suzuki, T. P. Scott, K. H. Phan, M. Ruangchainikom, S. Takahashi, K. Shiba, and J. C. Wang. Motion characteristics and related factors of Modic changes in the lumbar spine. J. Neurosurg. Spine 22:1–7, 2015.

    Article  Google Scholar 

  48. Hayes, M. Roentgenographic evaluation of lumbar spine flex-ex in asymptomatic individuals. Spine (Phila. Pa. 1976) 14:327–331, 1989.

    Article  CAS  Google Scholar 

  49. Heuer, F., H. Schmidt, Z. Klezl, L. Claes, and H. Wilke. Stepwise reduction of functional spinal structures increase range of motion and change Lordosis angle. J. Biomech. 40:271–280, 2007.

    Article  PubMed  Google Scholar 

  50. Iida, T., K. Abumi, Y. Kotani, and K. Kaneda. Effects of aging and spinal degeneration on mechanical properties of lumbar supraspinous and interspinous ligaments. Spine J. 2:95–100, 2002.

    Article  PubMed  Google Scholar 

  51. Inoue, H., S. Montgomery, B. Aghdasi, Y. Tan, H. Tian, X. Jian, R. Terrell, V. Singh, and J. Wang. Analysis of relationship between paraspinal muscle fatty degeneration and cervical spine motion using kinetic magnetic resonance imaging. Glob. Spine J. 02:033–038, 2012.

    Article  Google Scholar 

  52. Jang, S. Y., M. H. Kong, H. J. Hymanson, T. K. Jin, K. Y. Song, and J. C. Wang. Radiographic parameters of segmental instability in lumbar spine using kinetic MRI. J. Korean Neurosurg. Soc. 45:24–31, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jaumard, N. V., W. C. Welch, and B. A. Winkelstein. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J. Biomech. Eng. 133:071010, 2011.

    Article  PubMed  Google Scholar 

  54. Kalichman, L., and D. J. Hunter. Lumbar facet joint osteoarthritis: a review. Semin. Arthritis Rheum. 37:69–80, 2007.

    Article  PubMed  Google Scholar 

  55. Kambin, P., J. E. Nixon, A. Chait, and J. L. Schaffer. Annular protrusion: pathophysiology and Roentgenographic appearance. Spine (Phila. Pa. 1976) 13:671–675, 1988.

    Article  CAS  Google Scholar 

  56. Kanayama, M., K. Abumi, K. Kaneda, S. Tadano, and T. Ukai. Phase lag of the intersegmental motion in flexion–extension of the lumbar and lumbosacral spine: an in vivo study. Spine (Phila. Pa. 1976) 21:1416–1422, 1996.

    Article  CAS  Google Scholar 

  57. Karadimas, E. J., M. Siddiqui, F. W. Smith, and D. Wardlaw. Positional MRI changes in supine versus sitting postures in patients with degenerative lumbar spine. J. Spinal Disord. Tech. 19:495–500, 2006.

    Article  PubMed  Google Scholar 

  58. Keorochana, G., C. E. Taghavi, K.-B. Lee, J. H. Yoo, J.-C. Liao, Z. Fei, and J. C. Wang. Effect of sagittal alignment on kinematic changes and degree of disc degeneration in the lumbar spine: an analysis using positional MRI. Spine (Phila. Pa. 1976) 36:893–898, 2011.

    Article  Google Scholar 

  59. Keorochana, G., C. E. Taghavi, S.-T. Tzeng, Y. Morishita, J. H. Yoo, K.-B. Lee, J.-C. Liao, and J. C. Wang. Magnetic resonance imaging grading of interspinous ligament degeneration of the lumbar spine and its relation to aging, spinal degeneration, and segmental motion. J. Neurosurg. Spine 13:494–499, 2010.

    Article  PubMed  Google Scholar 

  60. Kettler, A., F. Rohlmann, C. Ring, C. Mack, and H. J. Wilke. Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database. Eur. Spine J. 20:578–584, 2011.

    Article  PubMed  Google Scholar 

  61. Kirkaldy-Willis, W. H., and H. F. Farfan. Instability of the lumbar spine. Spine (Phila. Pa. 1976) 10:253, 1985.

    Article  Google Scholar 

  62. Knutsson, F. The instability associated with disc degeneration in the lumbar spine. Acta radiol. 25:593–609, 1944.

    Article  Google Scholar 

  63. Kong, M. H., H. J. Hymanson, K. Y. Song, D. K. Chin, Y. E. Cho, D. H. Yoon, and J. C. Wang. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit. J. Neurosurg. Spine 10:357–365, 2009.

    Article  PubMed  Google Scholar 

  64. Kong, M. H., Y. Morishita, W. He, M. Miyazaki, H. Zhang, G. Wu, H. J. Hymanson, and J. C. Wang. Lumbar segmental mobility according to the grade of the disc, the facet joint, the muscle, and the ligament pathology by using kinetic magnetic resonance imaging. Spine (Phila. Pa. 1976) 34:2537–2544, 2009.

    Article  Google Scholar 

  65. Krismer, M., C. Haid, H. Behensky, P. Kapfinger, F. Landauer, and F. Rachbauer. Motion in lumbar functional spine units during side bending and axial rotation moments depending on the degree of degeneration. Spine (Phila. Pa. 1976) 25:2020–2027, 2000.

    Article  CAS  Google Scholar 

  66. Kulig, K., C. Powers, and R. Landel. Segmental lumbar mobility in individuals with low back pain: in vivo assessment during manual and self-imposed motion using dynamic MRI. BMC Musculoskelet. Disord. 10:1–10, 2007.

    Google Scholar 

  67. Lao, L., M. D. Daubs, T. P. Scott, E. L. Lord, J. R. Cohen, R. Yin, G. Zhong, and J. C. Wang. Effect of disc degeneration on lumbar segmental mobility analyzed by kinetic magnetic resonance imaging. Spine (Phila. Pa. 1976) 40:316–322, 2014.

    Article  Google Scholar 

  68. Lee, S. H., S. D. Daffner, J. C. Wang, B. C. Davis, A. Alanay, and J. S. Kim. The change of whole lumbar segmental motion according to the mobility of degenerated disc in the lower lumbar spine: a kinetic MRI study. Eur. Spine J. 24:1893–1900, 2014.

    Article  PubMed  Google Scholar 

  69. Lee, S. W., E. R. C. Draper, and S. P. F. Hughes. Instantaneous center of rotation and instability of the cervical spine: a clinical study. Eur. Spine J. 22:641–648, 1997.

    CAS  Google Scholar 

  70. Lee, S., K. W. N. Wong, M. Chan, H. Yeung, J. L. F. Chiu, and J. C. Y. Leong. Development and validation of a new technique for assessing lumbar spine motion. Spine (Phila. Pa. 1976) 27:E215, 2002.

    Article  Google Scholar 

  71. Li, G., S. Wang, P. Passias, Q. Xia, G. Li, and K. Wood. Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur. Spine J. 18:1013–1021, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li, W., S. Wang, Q. Xia, P. Passias, M. Kozanek, K. Wood, and G. Li. Lumbar facet joint motion in patients with degenerative disc disease at affected and adjacent levels: an in vivo biomechanical study. Spine (Phila. Pa. 1976) 36:E629–E637, 2011.

    Article  Google Scholar 

  73. Malakoutian, M., D. Volkheimer, J. Street, M. F. Dvorak, H. J. Wilke, and T. R. Oxland. Do in vivo kinematic studies provide insight into adjacent segment degeneration? A qualitative systematic literature review. Eur. Spine J. 24:1865–1881, 2015.

    Article  PubMed  Google Scholar 

  74. Mansour, M., S. Spiering, C. Lee, H. Dathe, A. K. Kalscheuer, D. Kubein-Meesenburg, and H. Nägerl. Evidence for IHA migration during axial rotation of a lumbar spine segment by using a novel high-resolution 6D kinematic tracking system. J. Biomech. 37:583–592, 2003.

    Article  Google Scholar 

  75. McGregor, A. H., L. Anderton, W. M. W. Gedroyc, J. Johnson, and S. P. F. Hughes. The use of interventional open MRI to assess the kinematics of the lumbar spine in patients with spondylolisthesis. Spine (Phila. Pa. 1976) 27:1582–1586, 2002.

    Article  Google Scholar 

  76. McGregor, A. H., H. R. Cattermole, and S. P. Hughes. Spinal motion in lumbar degenerative disc disease. J. Bone Jt Surg. Br. 80:1009–1013, 1998.

    Article  CAS  Google Scholar 

  77. McGregor, A. H., H. R. Cattermole, and S. P. Hughes. Global spinal motion in subjects with lumbar spondylolysis and spondylolisthesis: does the grade or type of slip affect global spinal motion? Spine (Phila. Pa. 1976) 26:282–286, 2001.

    Article  CAS  Google Scholar 

  78. Meyerding, H. W. Spondylolisthesis. Surg. Gynecol. Obstet. 54:371, 1932.

    Google Scholar 

  79. Miao, J., S. Wang, Z. Wan, W. M. Park, Q. Xia, K. Wood, and G. Li. Motion characteristics of the vertebral segments with lumbar degenerative spondylolisthesis in elderly patients. Eur. Spine J. 22:425–431, 2013.

    Article  PubMed  Google Scholar 

  80. Mimura, M. Rotational instability of the lumbar spine—a three-dimensional motion study using bi-plane X-ray analysis system. Nippon Seikeigeka Gakkai Zasshi 64:546–559, 1990.

    CAS  PubMed  Google Scholar 

  81. Mimura, M., et al. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine (Phila. Pa. 1976) 19:1371–1380, 1993.

    Article  Google Scholar 

  82. Min, H. K., W. He, Y. D. Tsai, N. F. Chen, G. Keorochana, D. H. Do, and J. C. Wang. Relationship of facet tropism with degeneration and stability of functional spinal unit. Yonsei Med. J. 50:624–629, 2009.

    Article  Google Scholar 

  83. Miyasaka, K., K. Ohmori, K. Suzuki, and H. Inoue. Radiographic analysis of lumbar motion in relation to lumbosacral stability. Investigation of moderate and maximum motion. Spine (Phila. Pa. 1976) 25:732–737, 2000.

    Article  CAS  Google Scholar 

  84. Miyazaki, M., Y. Morishita, C. Takita, T. Yoshiiwa, J. C. Wang, and H. Tsumura. Analysis of the relationship between facet joint angle orientation and lumbar spine canal diameter with respect to the kinematics of the lumbar spinal unit. J. Spinal Disord. Tech. 23:242–248, 2010.

    Article  PubMed  Google Scholar 

  85. Muriuki, M. G., R. M. Havey, L. I. Voronov, G. Carandang, M. R. Zindrick, M. A. Lorenz, L. Lomasney, and A. G. Patwardhan. Effects of motion segment level, Pfirrmann intervertebral disc degeneration grade and gender on lumbar spine kinematics. 1–10, 2016. https://doi.org/10.1002/jor.23232.

  86. Ochia, R. S., N. Inoue, S. M. Renner, E. P. Lorenz, T. Lim, G. B. J. Andersson, and H. S. An. Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine (Phila. Pa. 1976) 31:2073–2078, 2006.

    Article  Google Scholar 

  87. Ochia, R. S., N. Inoue, R. Takatori, G. B. J. Andersson, and H. S. An. In vivo measurements of lumbar segmental motion during axial rotation in asymptomatic and chronic low back pain male subjects. Spine (Phila. Pa. 1976) 32:1394–1399, 2007.

    Article  Google Scholar 

  88. Ogston, N.G. Centrode patterns in the lumbar spine. 1985.

  89. Okawa, A., K. Shinomiya, H. Komori, T. Muneta, Y. Arai, and O. Nakai. Dynamic motion study of the whole lumbar spine by videofluoroscopy. Spine (Phila. Pa. 1976) 23:1743–1749, 1998.

    Article  CAS  Google Scholar 

  90. Olsson, T. H., G. Selvik, and S. Willner. Vertebral motion in spondylolisthesis. Acta Radiol. Diagn. (Stockh.) 17:861–868, 1976.

    Article  CAS  Google Scholar 

  91. Otani, K., A. Okawa, K. Shinomiya, and O. Nakai. Spondylolisthesis with postural slip reduction shows different motion patterns with video-fluoroscopic analysis. J. Orthop. Sci. 10:152–159, 2005.

    Article  PubMed  Google Scholar 

  92. Oxland, T. R., T. Lund, B. Jost, P. Cripton, K. Lippuner, P. Jaeger, and L. P. Nolte. The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance: an in vitro study. Spine (Phila. Pa. 1976) 21:2558–2569, 1996.

    Article  CAS  Google Scholar 

  93. Panjabi, M. M. Centers and angles of rotation of body joints: a study of errors and optimization. J. Biomech. 12:911–920, 1979.

    Article  CAS  PubMed  Google Scholar 

  94. Panjabi, M. M. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J. Spinal Disord. 5:390–397, 1992.

    Article  CAS  PubMed  Google Scholar 

  95. Panjabi, M. M. A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur. Spine J. 15:668–676, 2006.

    Article  PubMed  Google Scholar 

  96. Panjabi, M. M., V. K. Goel, and K. Takata. Physiologic strains in the lumbar spine ligaments. Spine (Phila. Pa. 1976) 7:192–203, 1982.

    Article  CAS  Google Scholar 

  97. Panjabi, M. M., T. R. Oxland, I. Yamamoto, and J. J. Crisco. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load–displacement curves. J. Bone Jt Surg. Am. 76:413–424, 1994.

    Article  CAS  Google Scholar 

  98. Passias, P. G., S. Wang, M. Kozanek, Q. Xia, W. Li, B. Grottkau, K. B. Wood, and G. Li. Segmental lumbar rotation in patients with discogenic low back pain during functional weight-bearing activities. J. Bone Jt Surg. Am. 93:29–37, 2011.

    Article  Google Scholar 

  99. Patel, M. M., D. V. Gohil, and T. C. Singel. Orientation of superior articular facets from C3 to S1 vertebrae. J. Anat. Soc. India 53:35–39, 2004.

    Google Scholar 

  100. Pearcy, M. J. Stereoradiography of lumbar spine motion. Acta Orthop. Scand. 212(Suppl):1–45, 1985.

    Article  CAS  Google Scholar 

  101. Pearcy, M. J., and N. Bogduk. Instantaneous axes of rotation of the lumbar intervertebral joints. pdf., 1988.

  102. Pearcy, M., and J. Shepherd. Is there instability in spondylolisthesis? Spine (Phila. Pa. 1976) 10:175–177, 1985.

    Article  CAS  Google Scholar 

  103. Pennal, G. F., G. S. Conn, G. McDonald, G. Dale, and H. Garside. Motion studies of the lumbar spine—a preliminary report. J. Bone Jt Surg. 54 B:442–452, 1972.

    Article  Google Scholar 

  104. Penning, L., and J. R. Blickman. Instability in lumbar spondylolisthesis: a radiologic study of several concepts. Am. J. Roentgenol. 1979. https://doi.org/10.2214/ajr.134.2.293.

    Article  Google Scholar 

  105. Phan, K. H., M. D. Daubs, A. I. Kupperman, T. P. Scott, and J. C. Wang. Kinematic analysis of diseased and adjacent segments in degenerative lumbar spondylolisthesis. Spine J. 15:230–237, 2015.

    Article  PubMed  Google Scholar 

  106. Plamondon, A., M. Gagnon, and G. Maurais. Application of a stereoradiographic method for the study of intervertebral motion. Spine (Phila. Pa. 1976) 13:1027–1032, 1988.

    Article  CAS  Google Scholar 

  107. Pope, M. H., D. G. Wilder, R. E. Matteri, and J. W. Frymoyer. Experimental measurements of vertebral motion under load. Orthop. Clin. N. Am. 8:155–167, 1977.

    CAS  Google Scholar 

  108. Quack, C., P. Schenk, T. Laeubli, S. Spillmann, J. Hodler, B. A. Michel, and A. Klipstein. Do MRI findings correlate with mobility tests? An explorative analysis of the test validity with regard to structure. Eur. Spine J. 16:803–812, 2007.

    Article  PubMed  Google Scholar 

  109. Quint, U., and H. J. Wilke. Grading of degenerative disk disease and functional impairment: imaging versus patho-anatomical findings. Eur. Spine J. 17:1705–1713, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rolander, S. D. Motion of the lumbar spine with special reference to the stabilizing effect of posterior fusion: an experimental study on autopsy specimens. 1966. https://doi.org/10.3109/ort.1966.37.suppl-90.01.

  111. Rousseau, M. A., D. S. Bradford, T. M. Hadi, K. L. Pedersen, and J. C. Lotz. The instant axis of rotation influences facet forces at L5/S1 during flexion/extension and lateral bending. Eur. Spine J. 15:299–307, 2006.

    Article  PubMed  Google Scholar 

  112. Rozumalski, A., M. H. Schwartz, R. Wervey, A. Swanson, D. C. Dykes, and T. Novacheck. The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture 28:378–384, 2008.

    Article  PubMed  Google Scholar 

  113. Sakamaki, T., S. Katoh, and K. Sairyo. Normal and spondylolytic pediatric spine movements with reference to instantaneous axis of rotation. Spine (Phila. Pa. 1976) 27:141–145, 2002.

    Article  Google Scholar 

  114. Saleem, S., H. M. Aslam, M. A. K. Rehmani, A. Raees, A. A. Alvi, and J. Ashraf. Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image findings. Asian Spine J. 7:322–334, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Samartzis, D., et al. Is lumbar facet joint tropism developmental or secondary to degeneration? An international, large-scale multicenter study by the AOSpine Asia Pacific Research Collaboration Consortium. Scoliosis Spinal Disord. 11:9, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Saraste, H., L. A. Brostrom, and T. Aparisi. Prognostic radiographic aspects of spondylolisthesis. Acta Radiol. Diagn. (Stockh.) 25:427–432, 1984.

    Article  CAS  Google Scholar 

  117. Schmidt, H., F. Heuer, L. Claes, and H. J. Wilke. The relation between the instantaneous center of rotation and facet joint forces—a finite element analysis. Clin. Biomech. 23:270–278, 2008.

    Article  Google Scholar 

  118. Schneider, G., M. J. Pearcy, and N. Bogduk. Abnormal motion in spondylolytic spondylolisthesis. Spine (Phila. Pa. 1976) 30:1159–1164, 2005.

    Article  Google Scholar 

  119. Seligman, J. V., S. D. Gertzbein, M. Tile, and A. Kapasouri. Computer analysis of spinal segment motion in degenerative disc disease with and without axial loading. Spine (Phila. Pa. 1976) 9:566–573, 1984.

    Article  CAS  Google Scholar 

  120. Serena S. Hu, MD, Clifford B. Tribus, MD, Mohammad Diab, MD, and Alexander J. Ghanayem, M. Spondylolisthesis and Spondylolysis. Pain 57:655–671, 2007.

  121. Serhan, H. A., G. Varnavas, A. P. Dooris, A. Patwadhan, and M. Tzermiadianos. Biomechanics of the posterior lumbar articulating elements. Neurosurg. Focus 22:E1, 2007.

    Article  PubMed  Google Scholar 

  122. Shahidi, B., J. C. Hubbard, M. C. Gibbons, S. Ruoss, V. Zlomislic, R. T. Allen, S. R. Garfin, and S. R. Ward. Lumbar multifidus muscle degenerates in individuals with chronic degenerative lumbar spine pathology. J. Orthop. Res. 35:2700–2706, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shin, J. H., S. Wang, Q. Yao, K. B. Wood, and G. Li. Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body. Eur. Spine J. 22:2671–2677, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Shirazi-Adl, A., A. M. Ahmed, and S. C. Shrivastava. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. 1986.

  125. Simon, P., A. A. E. Orías, G. B. J. Andersson, H. S. An, and N. N. Inoue. In vivo topographic analysis of lumbar facet joint space width distribution in healthy and symptomatic subjects. Spine (Phila. Pa. 1976) 37:1058–1064, 2012.

    Article  Google Scholar 

  126. Stokes, I. A., and J. W. Frymoyer. Segmental motion and instability. Spine (Phila. Pa. 1976) 12:688–691, 1987.

    Article  CAS  Google Scholar 

  127. Takayanagi, K., K. Takahashi, M. Yamagata, H. Moriya, H. Kitahara, and T. Tamaki. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine. Spine (Phila. Pa. 1976) 26:1858–1865, 2001.

    Article  CAS  Google Scholar 

  128. Tallroth, K., H. Alaranta, and A. Soukka. Lumbar mobility in asymptomatic individuals. J. Spinal Disord. 5:481–484, 1992.

    Article  CAS  PubMed  Google Scholar 

  129. Tan, Y., B. G. Aghdasi, S. R. Montgomery, H. Inoue, C. Lu, and J. C. Wang. Kinetic magnetic resonance imaging analysis of lumbar segmental mobility in patients without significant spondylosis. Eur. Spine J. 21:2673–2679, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Tanaka, N., H. S. An, T. H. Lim, A. Fujiwara, C. H. Jeon, and V. M. Haughton. The relationship between disc degeneration and flexibility of the lumbar spine. Spine J. 1:47–56, 2001.

    Article  CAS  PubMed  Google Scholar 

  131. Teichtahl, A. J., D. M. Urquhart, Y. Wang, A. E. Wluka, R. O’Sullivan, G. Jones, and F. M. Cicuttini. Lumbar disc degeneration is associated with Modic change and high paraspinal fat content—a 3.0T magnetic resonance imaging study. BMC Musculoskelet. Disord. 17:1–7, 2016.

    Article  CAS  Google Scholar 

  132. Teyhen, D. S., T. W. Flynn, J. D. Childs, T. R. Kuklo, M. K. Rosner, D. W. Polly, and L. D. Abraham. Fluoroscopic video to identify aberrant lumbar motion. Spine (Phila. Pa. 1976) 32:E220–E229, 2007.

    Article  Google Scholar 

  133. Thomopoulos, C., G. Parati, and A. Zanchetti. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - Updated overview and meta-analyses of randomized trials. J. Hypertens. 34:613–622, 2016.

  134. Torgerson, W. R., and W. E. Dotter. Comparative Roentgenographic study of the asymptomatic and symptomatic lumbar spine. J. Bone Jt Surg. Am. 58:850–853, 1976.

    Article  CAS  Google Scholar 

  135. Vernon-Roberts, B., and C. J. Pirie. Degenerative changes in the intervertebral discs of the lumbar spine and their squeletae. Rheumatol. Rehabil. 16:13–21, 1977.

    Article  CAS  PubMed  Google Scholar 

  136. Volkheimer, D., M. Malakoutian, T. R. Oxland, and H. J. Wilke. Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature. Eur. Spine J. 24:1882–1892, 2015.

    Article  PubMed  Google Scholar 

  137. Wachowski, M. M., T. Hawellek, J. Hubert, A. Lehmann, M. Mansour, C. Dumont, J. Dörner, B. W. Raab, D. Kubein-Meesenburg, and H. Nägerl. Migration of the instantaneous axis of motion during axial rotation in lumbar segments and role of the zygapophysial joints. Acta Bioeng. Biomech. 12:39–46, 2010.

    PubMed  Google Scholar 

  138. Wang, S., P. Passias, G. Li, G. Li, and K. Wood. Measurement of Vertebral Kinematics Using Noninvasive Image Matching Method – Validation and Application. Spine (Phila Pa 1976) 33:355–361, 2008.

  139. Weiner, D. K., B. Distell, S. Studenski, S. Martinez, L. Lomasney, and D. Bongiorni. Does radiographic osteoarthritis correlate with flexibility of the lumbar spine? J. Am. Geriatr. Soc. 42:257–263, 1994.

    Article  CAS  PubMed  Google Scholar 

  140. White 3rd, A. A., and M. M. Panjabi. The basic kinematics of the human spine. A review of past and current knowledge. Spine (Phila Pa 1976) 3:12–20, 1978.

  141. White, A. A., and M. Panjabi. Clinical Biomechanics of the Spine, 2nd ed. Philadelphia: Lippincott 2:18–20, 1990.

  142. Wong, K., K. Luk, J. Leong, S. Wong, and K. Wong. Continuous Dynamic Spinal Motion Analysis. Spine (Phila. Pa. 1976). 31:414–419, 2006.

  143. Wong, K. W. N., J. C. Y. Leong, M. Chan, K. D. K. Luk, and W. W. Lu. The flexion-extension profile of lumbar spine in 100 healthy volunteers. Spine (Phila. Pa. 1976). 29:1636–1641, 2004.

  144. Wood, K. B., C. A. Popp, E. E. Transfeldt, and A. E. Geissele. Radiographic evaluation of instability in spondylolisthesis. Spine (Phila. Pa. 1976). 19:1697–703, 1994.

  145. Wu, M., S. Wang, S. J. Driscoll, T. D. Cha, K. B. Wood, and G. Li. Dynamic motion characteristics of the lower lumbar spine: implication to lumbar pathology and surgical treatment. Eur. Spine J. 23:2350–2358, 2014.

    Article  PubMed  Google Scholar 

  146. Xia, Q., S. Wang, M. Kozanek, P. Passias, K. Wood, and G. Li. In-vivo motion characteristics of lumbar vertebrae in sagittal and transverse planes. J. Biomech. 43:1905–1909, 2010.

    Article  PubMed  Google Scholar 

  147. Yao, Q., S. Wang, J. Shin, G. Li, and K. B. Wood. Lumbar facet joint motion in patients with degenerative spondylolisthesis. J. Spinal Disord. Tech. 26:E19–E27, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Yoshioka, T., H. Tsuji, N. Hirano, and S. Sainoh. Motion characteristic of the normal lumbar spine in young adults: instantaneous axis of rotation and vertebral center motion analyses. J. Spinal Disord. Tech. 3:103–113, 1990.

    CAS  Google Scholar 

  149. Zhang, Y. H., C. Q. Zhao, L. S. Jiang, X. D. Chen, and L. Y. Dai. Modic changes: a systematic review of the literature. Eur. Spine J. 17:1289–1299, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zirbel, S. A., D. K. Stolworthy, L. L. Howell, and A. E. Bowden. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Spine J. 13:1134–1147, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Maria-Rosa Fasser’s contribution in editorial assistance.

Conflict of interest

No potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Widmer.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

(Angular/Translational) Segmental Motion Contribution

See Fig. 12 and Table 1.

Figure 12
figure 12

Search strategy for studies on segmental motion contribution.

Table 1 Results of the search for literature on segmental motion contribution.

Maximal Range of Motion

See Fig. 13 and Table 2.

Figure 13
figure 13

Search strategy for studies on maximal range of motion.

Table 2 Results of the search for literature on maximal range of motion.

Coupling

See Fig. 14 and Table 3.

Figure 14
figure 14

Search strategy for studies on coupled motion.

Table 3 Results of the search for literature on coupled motion.

Center of Rotation

See Fig. 15 and Table 4.

Figure 15
figure 15

Search strategy for studies on the center of rotation.

Table 4 Results of the search for literature on the center of rotation.

Phase Lag

See Fig. 16 and Table 5.

Figure 16
figure 16

Search strategy for studies on phase lag.

Table 5 Results of the search for literature on phase lag.

Disc Degeneration

Mechanical Stiffness

See Fig. 17 and Table 6.

Figure 17
figure 17

Search strategy for studies on disc degeneration and mechanical stiffness of the tissue.

Table 6 Results of the search for literature on disc degeneration and mechanical stiffness of the tissue.

Segmental and overall ROM

See Fig. 18 and Tables 7 and 8.

Figure 18
figure 18

Search strategy for studies on spinal ROM and disc degeneration.

Table 7 Results of the search for literature on spinal ROM and disc degeneration.
Table 8 Dotted lines → neutral zone?).

Facet Joint Osteoarthrosis

See Fig. 19 and Table 9.

Figure 19
figure 19

Search strategy for studies on spinal ROM and facet joint osteoarthrosis.

Table 9 Results of the search for literature on spinal ROM and facet joint osteoarthrosis.

Facet Joint Tropism

See Fig. 20 and Table 10.

Figure 20
figure 20

Search strategy for studies on spinal ROM and facet joint tropism.

Table 10 Results of the search for literature on spinal ROM and facet joint tropism.

Spondylolisthesis

See Fig. 21 and Table 11.

Figure 21
figure 21

Search strategy for studies on spinal ROM and spondylolisthesis.

Table 11 Results of the search for literature on spinal ROM and spondylolisthesis.

Ligament Degeneration

See Fig. 22 and Table 12.

Figure 22
figure 22

Search strategy for studies on spinal ROM and ligament degeneration.

Table 12 Results of the search for literature on spinal ROM and ligament degeneration.

Paraspinal Muscle Degeneration

See Fig. 23 and Table 13.

Figure 23
figure 23

Search strategy for studies on spinal ROM and paraspinal muscle degeneration.

Table 13 Results of the search for literature on spinal ROM and paraspinal muscle degeneration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widmer, J., Fornaciari, P., Senteler, M. et al. Kinematics of the Spine Under Healthy and Degenerative Conditions: A Systematic Review. Ann Biomed Eng 47, 1491–1522 (2019). https://doi.org/10.1007/s10439-019-02252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02252-x

Keywords

Navigation