Skip to main content
Log in

The Effect of Material Heterogeneity, Element Type, and Down-Sampling on Trabecular Stiffness in Micro Finite Element Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Preclinical and clinical bone strength predictions can be elucidated by understanding bone mechanics at a variety of hierarchical levels. As such, down-sampled micro-CT images are often used to make comparisons across image resolutions or used to reduce computational resources in micro finite element models (µFEMs). Therefore, the objectives of this study were to compare trabecular apparent modulus among (i) hexahedral and tetrahedral µFEMs, (ii) µFEMs generated from 32, 64, and 64 µm down-sampled from 32 µm µCT scans, and (iii) µFEMs with homogeneous and heterogeneous tissue moduli. Trabecular µFEMs were generated from scans at the three spatial resolutions taken from the glenoid vault of 14 cadaveric specimens. Simulated unconstrained compression was performed and used to calculate and compare the apparent modulus of each µFEM. It was found that models derived from high-resolution images that account for material heterogeneity are nearly equivalent whether hexahedral or tetrahedral elements are used. However, translation of stiffness from down-sampled scans are not equivalent to scans performed at the down-sampled resolution, or that account for trabecular material heterogeneity. Material heterogeneity is most representative of in vivo trabecular bone and to accurately model trabecular mechanical properties, material heterogeneity should be considered in future µFEM development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bauer, J. S., I. Sidorenko, D. Mueller, T. Baum, A. S. Issever, F. Eckstein, E. J. Rummeny, T. M. Link, and C. W. Raeth. Prediction of bone strength by μcT and MDCT-based finite-element-models: how much spatial resolution is needed? Eur. J. Radiol. 83:e36–e42, 2014.

    Article  PubMed  Google Scholar 

  2. Bayraktar, H. H., E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37:27–35, 2004.

    Article  PubMed  Google Scholar 

  3. Bevill, G., and T. M. Keaveny. Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone 44:579–584, 2009.

    Article  Google Scholar 

  4. Bourne, B. C., and M. C. H. Van Der Meulen. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J. Biomech. 37:613–621, 2004.

    Article  PubMed  Google Scholar 

  5. Brennan, O., O. D. Kennedy, T. C. Lee, S. M. Rackard, and F. J. O’Brien. Biomechanical properties across trabeculae from the proximal femur of normal and ovariectomised sheep. J. Biomech. 42:498–503, 2009.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, Y., E. Dall’Ara, E. Sales, K. Manda, R. Wallace, P. Pankaj, and M. Viceconti. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J. Mech. Behav. Biomed. Mater. 65:644–651, 2017.

    Article  PubMed  Google Scholar 

  7. Costa, M. C., G. Tozzi, L. Cristofolini, V. Danesi, M. Viceconti, and E. Dall’Ara. Micro finite element models of the vertebral body: validation of local displacement predictions. PLoS One 12:1–18, 2017.

    Google Scholar 

  8. Cyganik, Ł., M. Binkowski, G. Kokot, T. Rusin, P. Popik, F. Bolechała, R. Nowak, Z. Wróbel, and A. John. Prediction of Young’s modulus of trabeculae in microscale using macro-scale’s relationships between bone density and mechanical properties. J. Mech. Behav. Biomed. Mater. 36:120–134, 2014.

    Article  PubMed  Google Scholar 

  9. Dall’Ara, E., M. Peña-Fernández, M. Palanca, M. Giorgi, L. Cristofolini, and G. Tozzi. Precision of digital volume correlation approaches for strain analysis in bone imaged with micro-computed tomography at different dimensional levels. Front. Mater. 4:31, 2017.

    Article  Google Scholar 

  10. Depalle, B., R. Chapurlat, H. Walter-Le-Berre, B. Bou-Saïd, and H. Follet. Finite element dependence of stress evaluation for human trabecular bone. J. Mech. Behav. Biomed. Mater. 18:200–212, 2013.

    Article  CAS  PubMed  Google Scholar 

  11. Faieghi, M., N. K. Knowles, O. R. Tutunea-fatan, and L. M. Ferreira. Fast generation of cartesian meshes from micro-computed tomography data. Comput. Aided Des. Appl. 16:161–171, 2019.

    Article  Google Scholar 

  12. Harrison, N. M., P. F. McDonnell, D. C. O’Mahoney, O. D. Kennedy, F. J. O’Brien, and P. E. McHugh. Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. J. Biomech. 41:2589–2596, 2008.

    Article  PubMed  Google Scholar 

  13. Helgason, B., E. Perilli, E. Schileo, and F. Taddei. Mathematical relationships between bone density and mechanical properties: a literature review. Clin. Biomech. 23:135–146, 2008.

    Article  Google Scholar 

  14. Jaasma, M. J., H. H. Bayraktar, G. L. Niebur, and T. M. Keaveny. Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. J. Biomech. 35:237–246, 2002.

    Article  PubMed  Google Scholar 

  15. Kim, D. G., G. T. Christopherson, X. N. Dong, D. P. Fyhrie, and Y. N. Yeni. The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone. Bone 35:1375–1382, 2004.

    Article  PubMed  Google Scholar 

  16. Lu, Y. Influence of the specimen scan condition on the finite element voxel model of human vertebral cancellous bone. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 3:172–176, 2015.

    Article  Google Scholar 

  17. Lu, Y., K. Engelke, C.-C. Glueer, M. M. Morlock, and G. Huber. The effect of in situ/in vitro threedimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 228:1208–1213, 2014.

    Article  Google Scholar 

  18. Niebur, G. L., J. C. Yuen, A. C. Hsia, and T. M. Keaveny. Convergence behavior of high-resolution finite element models of trabecular bone. J. Biomech. Eng. 121:629, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Oftadeh, R., M. Perez-Viloria, J. C. Villa-Camacho, A. Vaziri, and A. Nazarian. Biomechanics and mechanobiology of trabecular bone: a review. J. Biomech. Eng. 137:10802, 2015.

    Article  Google Scholar 

  20. Palanca, M., A. J. Bodey, M. Giorgi, M. Viceconti, D. Lacroix, L. Cristofolini, and E. Dall’Ara. Local displacement and strain uncertainties in different bone types by digital volume correlation of synchrotron microtomograms. J. Biomech. 58:27–36, 2017.

    Article  PubMed  Google Scholar 

  21. Pegg, E. C., and H. S. Gill. An open source software tool to assign the material properties of bone for ABAQUS finite element simulations. J. Biomech. 49:3116–3121, 2016.

    Article  PubMed  Google Scholar 

  22. Renders, G. A. P., L. Mulder, G. E. J. Langenbach, L. J. van Ruijven, and T. M. G. J. van Eijden. Biomechanical effect of mineral heterogeneity in trabecular bone. J. Biomech. 41:2793–2798, 2008.

    Article  CAS  PubMed  Google Scholar 

  23. Renders, G. A. P., L. Mulder, L. J. van Ruijven, G. E. J. Langenbach, and T. M. G. J. van Eijden. Mineral heterogeneity affects predictions of intratrabecular stress and strain. J. Biomech. 44:402–407, 2011.

    Article  CAS  PubMed  Google Scholar 

  24. van Rietbergen, B., H. Weinans, R. Huiskes, and A. Odgaard. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-elements models. J. Biomech. 28:69–81, 1995.

    Article  PubMed  Google Scholar 

  25. van Ruijven, L. J., L. Mulder, and T. M. G. J. van Eijden. Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone. J. Biomech. 40:1211–1218, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Andrew Nelson for his assistance with microCT scanning, Mohammadreza Faieghi for the voxelization code, and Shruthi Poolacherla for her assistance with data collection. Nikolas K. Knowles is supported in part by an Ontario Graduate Scholarship and by a Transdisciplinary Bone & Joint Training Award from the Collaborative Training Program in Musculoskeletal Health Research at The University of Western Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Ferreira.

Additional information

Associate Editor Ka-Wai Kwok oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knowles, N.K., Ip, K. & Ferreira, L.M. The Effect of Material Heterogeneity, Element Type, and Down-Sampling on Trabecular Stiffness in Micro Finite Element Models. Ann Biomed Eng 47, 615–623 (2019). https://doi.org/10.1007/s10439-018-02152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02152-6

Keywords

Navigation