Skip to main content
Log in

Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Coronary stents have revolutionized the treatment of coronary artery disease. Improvement in clinical outcomes requires detailed evaluation of the performance of stent biomechanics and the effectiveness as well as safety of biomaterials aiming at optimization of endovascular devices. Stents need to harmonize the hemodynamic environment and promote beneficial vessel healing processes with decreased thrombogenicity. Stent design variables and expansion properties are critical for vessel scaffolding. Drug-elution from stents, can help inhibit in-stent restenosis, but adds further complexity as drug release kinetics and coating formulations can dominate tissue responses. Biodegradable and bioabsorbable stents go one step further providing complete absorption over time governed by corrosion and erosion mechanisms. The advances in computing power and computational methods have enabled the application of numerical simulations and the in silico evaluation of the performance of stent devices made up of complex alloys and bioerodible materials in a range of dimensions and designs and with the capacity to retain and elute bioactive agents. This review presents the current knowledge on stent biomechanics, stent fatigue as well as drug release and mechanisms governing biodegradability focusing on the insights from computational modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abizaid, A., and J. R. Costa. New drug-eluting stents: an overview on biodegradable and polymer-free next-generation stent systems. Circ. Cardiovasc. Interv. 3:384–393, 2010.

    Article  CAS  PubMed  Google Scholar 

  2. Alexy, R. D., and D. S. Levi. Materials and manufacturing technologies available for production of a pediatric bioabsorbable stent. BioMed. Res. Int. 2013:137985, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Amiable, S., S. Chapuliot, A. Constantinescu, and A. Fissolo. A comparison of lifetime prediction methods for a thermal fatigue experiment. Int. J. Fatigue 28:692–706, 2006.

    Article  Google Scholar 

  4. Antoniadis, A. P., P. Mortier, G. Kassab, G. Dubini, N. Foin, Y. Murasato, A. A. Giannopoulos, S. Tu, K. Iwasaki, Y. Hikichi, F. Migliavacca, C. Chiastra, J. J. Wentzel, F. Gijsen, J. H. Reiber, P. Barlis, P. W. Serruys, D. L. Bhatt, G. Stankovic, E. R. Edelman, G. D. Giannoglou, Y. Louvard, and Y. S. Chatzizisis. Biomechanical modeling to improve coronary artery bifurcation stenting: expert review document on techniques and clinical implementation. J. Am. Coll. Cardiol. Interv. 8:1281–1296, 2015.

    Article  Google Scholar 

  5. Artzi, N., A. R. Tzafriri, K. M. Faucher, G. Moodie, T. Albergo, S. Conroy, S. Corbeil, P. Martakos, R. Virmani, and E. R. Edelman. Sustained efficacy and arterial drug retention by a fast drug eluting cross-linked fatty acid coronary stent coating. Ann. Biomed. Eng. 44:276–286, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Auricchio, F., M. D. Loreto, and E. Sacco. Finite-element analysis of a stenotic artery revascularization through a stent insertion. Comput. Methods Biomech. Biomed. Eng. 4:249–263, 2001.

    Article  Google Scholar 

  7. Azaouzi, M., A. Makradi, and S. Belouettar. Numerical investigations of the structural behavior of a balloon expandable stent design using finite element method. Comp. Mater. Sci. 72:54–61, 2013.

    Article  CAS  Google Scholar 

  8. Azaouzi, M., A. Makradi, J. Petit, S. Belouettar, and O. Polit. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput. Mater. Sci. 79:326–335, 2013.

    Article  CAS  Google Scholar 

  9. Balakrishnan, B., J. F. Dooley, G. Kopia, and E. R. Edelman. Intravascular drug release kinetics dictate arterial drug deposition, retention, and distribution. J. Control. Release 123:100–108, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balakrishnan, B., A. R. Tzafriri, P. Seifert, A. Groothuis, C. Rogers, and E. R. Edelman. Strut position, blood flow, and drug deposition: implications for single and overlapping drug-eluting stents. Circulation 111:2958–2965, 2005.

    Article  PubMed  Google Scholar 

  11. Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41:1053–1061, 2008.

    Article  PubMed  Google Scholar 

  12. Barocas, V., W. Drasler, T. Girton, I. Guler, D. Knapp, J. Moeller, and E. Parsonage. A dissolution-diffusion model for the TAXUS drug-eluting stent with surface burst estimated from continuum percolation. J. Biomed. Mater. Res. Part B Appl. Biomater. 90:267–274, 2009.

    PubMed  Google Scholar 

  13. Bedoya, J., C. A. Meyer, L. H. Timmins, M. R. Moreno, and J. E. Moore. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765, 2006.

    Article  PubMed  Google Scholar 

  14. Beier, S., J. Ormiston, M. Webster, J. Cater, S. Norris, P. Medrano-Gracia, A. Young, and B. Cowan. Hemodynamics in idealized stented coronary arteries: important stent design considerations. Ann. Biomed. Eng. 44:315–329, 2016.

    Article  PubMed  Google Scholar 

  15. Bergström, J. S., and D. Hayman. An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann. Biomed. Eng. 44:330–340, 2015.

    Article  PubMed  Google Scholar 

  16. Berry, J. L., A. Santamarina, J. E. M. Jr, S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Boland, E. L., J. A. Grogan, and C. Conway. Computer simulation of the mechanical behaviour of implanted biodegradable stents in a remodelling artery. JOM 68:1198–1203, 2016.

    Article  CAS  Google Scholar 

  18. Boland, E. L., R. Shine, N. Kelly, C. A. Sweeney, and P. E. McHugh. A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann. Biomed. Eng. 44:341–356, 2016.

    Article  PubMed  Google Scholar 

  19. Bozsak, F., J.-M. Chomaz, and A. I. Barakat. Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall. Biomech. Model. Mechanobiol. 13:327–347, 2014.

    Article  PubMed  Google Scholar 

  20. Bozsak, F., D. Gonzalez-Rodriguez, Z. Sternberger, P. Belitz, T. Bewley, J.-M. Chomaz, and A. I. Barakat. Optimization of drug delivery by drug-eluting stents. PLoS ONE 10:e0130182, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bressloff, N. W., G. Ragkousis, and N. Curzen. Design optimisation of coronary artery stent systems. Ann. Biomed. Eng. 44:357–367, 2016.

    Article  PubMed  Google Scholar 

  22. Cardarelli, F. Less common nonferrous metals. In: Materials Handbook. Berlin: Springer, 2008, pp. 213–454.

  23. Carlyle, W. C., J. B. McClain, A. R. Tzafriri, L. Bailey, B. G. Zani, P. M. Markham, J. R. Stanley, and E. R. Edelman. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug. J. Control. Release 162:561–567, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Center for Devices and Radiological Health. Recently-approved devices—CYPHER™ sirolimus-eluting coronary stent—P020026, 2004.

  25. Center for Devices and Radiological Health. Recently-approved devices—TAXUS™ Express2™ paclitaxel-eluting coronary stent system—P030025, 2004.

  26. Center for Devices and Radiological Health. Guidance documents (medical devices and radiation-emitting products)—guidance for industry and FDA Staff—non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems, 2015.

  27. Center for Devices and Radiological Health. Search for FDA guidance documents—guidance for Industry and FDA Staff—non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems, 2015.

  28. Chan, M. Y., J. I. Weitz, Y. Merhi, R. A. Harrington, and R. C. Becker. Catheter thrombosis and percutaneous coronary intervention: fundamental perspectives on blood, artificial surfaces and antithrombotic drugs. J. Thromb. Thrombolysis 28:366–380, 2009.

    Article  PubMed  Google Scholar 

  29. Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37:1310–1321, 2009.

    Article  PubMed  Google Scholar 

  30. Chen, Y., S. Zhou, and Q. Li. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater. 7:1140–1149, 2011.

    Article  CAS  PubMed  Google Scholar 

  31. Conway, C., F. Sharif, J. P. McGarry, and P. E. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:374–387, 2012.

    Article  Google Scholar 

  32. Costa, J. R., A. Abizaid, R. Costa, F. Feres, L. F. Tanajura, A. Abizaid, G. Maldonado, R. Staico, D. Siqueira, A. G. M. R. Sousa, R. Bonan, and J. E. Sousa. 1-year results of the hydroxyapatite polymer-free sirolimus-eluting stent for the treatment of single de novo coronary lesions: the VESTASYNC I trial. JACC Cardiovasc. Interv. 2:422–427, 2009.

    Article  PubMed  Google Scholar 

  33. Creel, C. J., M. A. Lovich, and E. R. Edelman. Arterial paclitaxel distribution and deposition. Circ. Res. 86:879–884, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. da Costa-Mattos, H. S., I. N. Bastos, and J. A. C. P. Gomes. A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride. Corros. Sci. 50:2858–2866, 2008.

    Article  CAS  Google Scholar 

  35. Daemen, J., P. Wenaweser, K. Tsuchida, L. Abrecht, S. Vaina, C. Morger, N. Kukreja, P. Jüni, G. Sianos, G. Hellige, R. T. van Domburg, O. M. Hess, E. Boersma, B. Meier, S. Windecker, and P. W. Serruys. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369:667–678, 2007.

    Article  CAS  PubMed  Google Scholar 

  36. Debusschere, N., P. Segers, P. Dubruel, B. Verhegghe, and M. D. Beule. A computational framework to model degradation of biocorrodible metal stents using an implicit finite element solver. Ann. Biomed. Eng. 44:382–390, 2015.

    Article  PubMed  Google Scholar 

  37. Dechy-Cabaret, O., B. Martin-Vaca, and D. Bourissou. Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 104:6147–6176, 2004.

    Article  CAS  PubMed  Google Scholar 

  38. Di Mario, C., H. Griffiths, O. Goktekin, N. Peeters, J. Verbist, M. Bosiers, K. Deloose, B. Heublein, R. Rohde, V. Kasese, C. Ilsley, and R. Erbel. Drug-eluting bioabsorbable magnesium stent. J. Interv. Cardiol. 17:391–395, 2004.

    Article  PubMed  Google Scholar 

  39. Di Santo, P., T. Simard, F. D. Ramirez, A. Pourdjabbar, D. T. Harnett, K. Singh, R. Moreland, A. Y. Chong, A. Dick, M. Labinaz, M. Froeschl, M. Froeschl, M. R. Le May, D. Y. So, and B. Hibbert. Does stent strut design impact clinical outcomes: comparative safety and efficacy of Endeavor Resolute versus Resolute Integrity zotarolimus-eluting stents. Clin. Invest. Med. 38:E296–E304, 2015.

    PubMed  Google Scholar 

  40. Dinarvand, R., S. Mahmoodi, E. Farboud, M. Salehi, and F. Atyabi. Preparation of gelatin microspheres containing lactic acid—effect of cross-linking on drug release. Acta Pharm. 55:57–67, 2005.

    CAS  PubMed  Google Scholar 

  41. Dordoni, E., A. Meoli, W. Wu, G. Dubini, F. Migliavacca, G. Pennati, and L. Petrini. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med. Eng. Phys. 36:842–849, 2014.

    Article  PubMed  Google Scholar 

  42. Drachman, D. E., E. R. Edelman, P. Seifert, A. R. Groothuis, D. A. Bornstein, K. R. Kamath, M. Palasis, D. Yang, S. H. Nott, and C. Rogers. Neointimal thickening after stent delivery of paclitaxel: change in composition and arrest of growth over six months. J. Am. Coll. Cardiol. 36:2325–2332, 2000.

    Article  CAS  PubMed  Google Scholar 

  43. Dumoulin, C., and B. Cochelin. Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33:1461–1470, 2000.

    Article  CAS  PubMed  Google Scholar 

  44. Duraiswamy, N., R. T. Schoephoerster, and J. E. Moore, Jr. Comparison of near-wall hemodynamic parameters in stented artery models. J. Biomech. Eng. 131:061006, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dyet, J. F., W. G. Watts, D. F. Ettles, and A. A. Nicholson. Mechanical properties of metallic stents: how do these properties influence the choice of stent for specific lesions? Cardiovasc. Intervent. Radiol. 23:47–54, 2000.

    Article  CAS  PubMed  Google Scholar 

  46. Ellis, S. G., D. J. Kereiakes, D. C. Metzger, R. P. Caputo, D. G. Rizik, P. S. Teirstein, M. R. Litt, A. Kini, A. Kabour, S. O. Marx, J. J. Popma, R. McGreevy, Z. Zhang, C. Simonton, and G. W. Stone. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N. Engl. J. Med. 373:1905–1915, 2015.

    Article  CAS  PubMed  Google Scholar 

  47. Etave, F., G. Finet, M. Boivin, J. C. Boyer, G. Rioufol, and G. Thollet. Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34:1065–1075, 2001.

    Article  CAS  PubMed  Google Scholar 

  48. Everett, K. D., C. Conway, G. J. Desany, B. L. Baker, G. Choi, C. A. Taylor, and E. R. Edelman. Structural mechanics predictions relating to clinical coronary stent fracture in a 5 year period in FDA MAUDE database. Ann. Biomed. Eng. 44:391–403, 2016.

    Article  PubMed  Google Scholar 

  49. Finn, A. V., M. Joner, G. Nakazawa, F. Kolodgie, J. Newell, M. C. John, H. K. Gold, and R. Virmani. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115:2435–2441, 2007.

    Article  PubMed  Google Scholar 

  50. Gallo, A., and G. Mani. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces: preparation, surface characterization, and in vitro drug release studies. Appl. Surf. Sci. 279:216–232, 2013.

    Article  CAS  Google Scholar 

  51. Gao, R., Y. Yang, Y. Han, Y. Huo, J. Chen, B. Yu, X. Su, L. Li, H. C. Kuo, S. W. Ying, W. F. Cheong, Y. Zhang, X. Su, B. Xu, J. J. Popma, and G. W. Stone. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China Trial. J. Am. Coll. Cardiol. 66:2298–2309, 2015.

    Article  CAS  PubMed  Google Scholar 

  52. Garg, S., C. Bourantas, and P. W. Serruys. New concepts in the design of drug-eluting coronary stents. Nat. Rev. Cardiol. 10:248–260, 2013.

    Article  CAS  PubMed  Google Scholar 

  53. Gastaldi, D., V. Sassi, L. Petrini, M. Vedani, S. Trasatti, and F. Migliavacca. Continuum damage model for bioresorbable magnesium alloy devices—application to coronary stents. J. Mech. Behav. Biomed. Mater. 4:352–365, 2011.

    Article  CAS  PubMed  Google Scholar 

  54. Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114, 1996.

    Article  PubMed  Google Scholar 

  55. Grogan, J. A., S. B. Leen, and P. E. McHugh. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34:8049–8060, 2013.

    Article  CAS  PubMed  Google Scholar 

  56. Grogan, J. A., B. J. O’Brien, S. B. Leen, and P. E. McHugh. A corrosion model for bioabsorbable metallic stents. Acta Biomater. 7:3523–3533, 2011.

    Article  CAS  PubMed  Google Scholar 

  57. Gunes, R., M. K. Apalak, and H. Golgeli. Superelastic behaviour analysis of a shape memory coronary stent. J. Biomech. 44:11, 2011.

    Article  Google Scholar 

  58. Haude, M., R. Erbel, P. Erne, S. Verheye, H. Degen, D. Böse, P. Vermeersch, I. Wijnbergen, N. Weissman, F. Prati, R. Waksman, and J. Koolen. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet 381:836–844, 2013.

    Article  CAS  PubMed  Google Scholar 

  59. Hermawan, H., D. Dubé, and D. Mantovani. Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J. Biomed. Mater. Res. 93A:1–11, 2010.

    CAS  Google Scholar 

  60. Hermawan, H., M. Moravej, D. Dubé, M. Fiset, and D. Mantovani. Degradation Behaviour of metallic biomaterials for degradable stents. Adv. Mater. Res. 15–17:113–118, 2007.

    Article  Google Scholar 

  61. Heublein, B., R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127:166–180, 2005.

    Article  PubMed  Google Scholar 

  63. Hopkins, C. G., P. E. McHugh, and J. P. McGarry. Computational investigation of the delamination of polymer coatings during stent deployment. Ann. Biomed. Eng. 38:2263–2273, 2010.

    Article  CAS  PubMed  Google Scholar 

  64. Hossainy, S., and S. Prabhu. A mathematical model for predicting drug release from a biodurable drug-eluting stent coating. J. Biomed. Mater. Res. A 87:487–493, 2008.

    Article  PubMed  CAS  Google Scholar 

  65. Hsiao, H. M., Y. H. Chiu, K. H. Kee, and C. H. Lin. Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior. Computer-Aided Des. 44:757–765, 2012.

    Article  Google Scholar 

  66. Hsiao, H.-M., K.-H. Lee, and Y.-C. Liao. Computational fluid dynamics simulation on biomedical stent design. J. Chem. Chem. Eng. 5:973–984, 2011.

    CAS  Google Scholar 

  67. Hsiao, H.-M., and M.-T. Yin. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents. Biomed. Microdevices 16:133–141, 2014.

    Article  CAS  PubMed  Google Scholar 

  68. Hwang, C. W., D. Wu, and E. R. Edelman. Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104:600–605, 2001.

    Article  CAS  PubMed  Google Scholar 

  69. Indolfi, L., M. Ligorio, D. T. Ting, K. Xega, A. R. Tzafriri, F. Bersani, N. Aceto, V. Thapar, B. C. Fuchs, V. Deshpande, A. B. Baker, C. R. Ferrone, D. A. Haber, R. Langer, J. W. Clark, and E. R. Edelman. A tunable delivery platform to provide local chemotherapy for pancreatic ductal adenocarcinoma. Biomaterials 93:71–82, 2016.

    Article  CAS  PubMed  Google Scholar 

  70. James, B. A., and R. A. Sire. Fatigue-life assessment and validation techniques for metallic vascular implants. Biomaterials 31:181–186, 2010.

    Article  CAS  PubMed  Google Scholar 

  71. Joner, M., A. V. Finn, A. Farb, E. K. Mont, F. D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H. K. Gold, and R. Virmani. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48:193–202, 2006.

    Article  PubMed  Google Scholar 

  72. Keller, B. K., C. M. Amatruda, D. R. Hose, J. Gunn, P. V. Lawford, G. Dubini, F. Migliavacca, and A. J. Narracott. Contribution of mechanical and fluid stresses to the magnitude of in-stent restenosis at the level of individual stent struts. Cardiovasc. Eng. Technol. 5:164–175, 2014.

    Article  Google Scholar 

  73. Kolachalama, V. B., A. R. Tzafriri, D. Y. Arifin, and E. R. Edelman. Luminal flow patterns dictate arterial drug deposition in stent-based delivery. J. Control. Release 133:24–30, 2009.

    Article  CAS  PubMed  Google Scholar 

  74. Kolandaivelu, K., and D. L. Bhatt. Antiplatelet therapy in coronary heart disease prevention. Cardiol. Clin. 29:71–85, 2011.

    Article  PubMed  Google Scholar 

  75. Kolandaivelu, K., and E. R. Edelman. Low background, pulsatile, in vitro flow circuit for modeling coronary implant thrombosis. J. Biomech. Eng. 124:662–668, 2002.

    Article  PubMed  Google Scholar 

  76. Kolandaivelu, K., R. Swaminathan, W. J. Gibson, V. B. Kolachalama, K.-L. Nguyen-Ehrenreich, V. L. Giddings, L. Coleman, G. K. Wong, and E. R. Edelman. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 123:1400–1409, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lally, C., and P. J. Prendergast. Simulation of in-stent restenosis for the design of cardiovascular stents. In: Mechanics of Biological Tissue, edited by P. G. A. Holzapfel, and P. R. W. Ogden. Berlin: Springer, 2006, pp. 255–267.

    Chapter  Google Scholar 

  78. Lee, S., C. W. Lee, and C. S. Kim. FEA study on the stress distributions in the polymer coatings of cardiovascular drug-eluting stent medical devices. Ann. Biomed. Eng. 42:1952–1965, 2014.

    Article  PubMed  Google Scholar 

  79. Levin, A. D., N. Vukmirovic, C. W. Hwang, and E. R. Edelman. Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel. Proc. Natl. Acad. Sci. U.S.A. 101:9463–9467, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Levy, Y., D. Mandler, J. Weinberger, and A. J. Domb. Evaluation of drug-eluting stents’ coating durability—clinical and regulatory implications. J. Biomed. Mater. Res. 91B:441–451, 2009.

    Article  CAS  Google Scholar 

  81. Li, J., Q. Luo, Z. Xie, Y. Li, and Y. Zeng. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 25:333–337, 2010.

    Article  PubMed  Google Scholar 

  82. Li, N., H. Zhang, and H. Ouyang. Shape optimization of coronary artery stent based on a parametric model. Finite Elem. Anal. Des. 45:468–475, 2009.

    Article  Google Scholar 

  83. Liu, B., and Y. F. Zheng. Effects of alloying elements (Mn Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 7:1407–1420, 2011.

    Article  CAS  PubMed  Google Scholar 

  84. Ma, J., N. Zhao, and D. Zhu. Sirolimus-eluting dextran and polyglutamic acid hybrid coatings on AZ31 for stent applications. J. Biomater. Appl. 30:579–588, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martin, D., and F. J. Boyle. Computational structural modelling of coronary stent deployment: a review. Comput. Methods Biomech. Biomed. Eng. 14:331–348, 2011.

    Article  Google Scholar 

  86. McGinty, S. A decade of modelling drug release from arterial stents. Math. Biosci. 257:80–90, 2014.

    Article  CAS  PubMed  Google Scholar 

  87. McGinty, S., T. T. N. Vo, M. Meere, S. McKee, and C. McCormick. Some design considerations for polymer-free drug-eluting stents: a mathematical approach. Acta Biomater. 18:213–225, 2015.

    Article  CAS  PubMed  Google Scholar 

  88. McHugh, P., A. Barakat, and S. McGinty. Medical stents: state of the art and future directions. Ann. Biomed. Eng. 44:274–275, 2016.

    Article  PubMed  Google Scholar 

  89. Mennuni, M. G., P. A. Pagnotta, and G. G. Stefanini. Coronary stents: the impact of technological advances on clinical outcomes. Ann. Biomed. Eng. 44:488–496, 2016.

    Article  PubMed  Google Scholar 

  90. Migliavacca, F., L. Petrini, P. Massarotti, S. Schievano, F. Auricchio, and G. Dubini. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2:205–217, 2004.

    Article  PubMed  Google Scholar 

  91. Mondy, J. S., V. Lindner, J. K. Miyashiro, B. C. Berk, R. H. Dean, and R. L. Geary. Platelet-derived growth factor ligand and receptor expression in response to altered blood flow in vivo. Circ. Res. 81:320–327, 1997.

    Article  CAS  PubMed  Google Scholar 

  92. Moravej, M., and D. Mantovani. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int. J. Mol. Sci. 12:4250–4270, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mori, K., and T. Saito. Effects of stent structure on stent flexibility measurements. Ann. Biomed. Eng. 33:733–742, 2005.

    Article  PubMed  Google Scholar 

  94. Morice, M. C., P. W. Serruys, J. E. Sousa, J. Fajadet, E. Ban Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, F. Molnàr, R. Falotico, and RAVEL Study Group. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346:1773–1780, 2002.

    Article  CAS  PubMed  Google Scholar 

  95. Morlacchi, S., S. G. Colleoni, R. Cardenes, C. Chiastra, J. L. Diez, I. Larrabide, and F. Migliavacca. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35:1272–1281, 2013.

    Article  PubMed  Google Scholar 

  96. Morlacchi, S., and F. Migliavacca. Modeling stented coronary arteries: where we are, where to go. Ann. Biomed. Eng. 41:1428–1444, 2013.

    Article  PubMed  Google Scholar 

  97. Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 47:899–907, 2014.

    Article  PubMed  Google Scholar 

  98. Mortier, P., G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, P. Verdonck, and B. Verhegghe. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38:88–99, 2010.

    Article  PubMed  Google Scholar 

  99. Moses, J. W., M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, R. E. Kuntz, and S. Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323, 2003.

    Article  CAS  PubMed  Google Scholar 

  100. Muramatsu, T., Y. Onuma, Y.-J. Zhang, C. V. Bourantas, A. Kharlamov, R. Diletti, V. Farooq, B. D. Gogas, S. Garg, H. M. García-García, Y. Ozaki, P. W. Serruys, T. Muramatsu, Y. Onuma, Y.-J. Zhang, C. V. Bourantas, A. Kharlamov, R. Diletti, V. Farooq, B. D. Gogas, S. Garg, H. M. García-García, Y. Ozaki, and P. W. Serruys. Progress in treatment by percutaneous coronary intervention: the stent of the future. Rev. Esp. Cardiol. 66:483–496, 2013.

    Article  PubMed  Google Scholar 

  101. Murphy, J. B., and F. J. Boyle. A full-range, multi-variable, CFD-based methodology to identify abnormal near-wall hemodynamics in a stented coronary artery. Biorheology 47:117–132, 2010.

    PubMed  Google Scholar 

  102. Murphy, J. G., R. S. Schwartz, K. C. Huber, and D. R. Holmes. Polymeric stents: modern alchemy or the future? J. Invasive Cardiol. 3:144–148, 1991.

    CAS  PubMed  Google Scholar 

  103. O’Brien, C. C., K. Kolandaivelu, J. Brown, A. C. Lopes, M. Kunio, V. B. Kolachalama, and E. R. Edelman. Constraining OCT with knowledge of device design enables high accuracy hemodynamic assessment of endovascular implants. PLoS ONE 11:e0149178, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. O’Brien, C. C., A. C. Lopes, K. Kolandaivelu, M. Kunio, J. Brown, V. B. Kolachalama, C. Conway, L. Bailey, P. Markham, M. Costa, J. Ware, and E. R. Edelman. Vascular response to experimental stent malapposition and under-expansion. Ann. Biomed. Eng. 44:2251–2260, 2016.

    Article  PubMed  Google Scholar 

  105. O’Brien, B., H. Zafar, A. Ibrahim, J. Zafar, and F. Sharif. Coronary stent materials and coatings: a technology and performance update. Ann. Biomed. Eng. 44:523–535, 2016.

    Article  PubMed  Google Scholar 

  106. Ong, A. T. L., R. T. van Domburg, J. Aoki, K. Sonnenschein, P. A. Lemos, and P. W. Serruys. Sirolimus-eluting stents remain superior to bare-metal stents at two years: medium-term results from the Rapamycin-Eluting Stent Evaluated at Rotterdam Cardiology Hospital (RESEARCH) registry. J. Am. Coll. Cardiol. 47:1356–1360, 2006.

    Article  CAS  PubMed  Google Scholar 

  107. Onuma, Y., and P. W. Serruys. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123:779–797, 2011.

    Article  PubMed  Google Scholar 

  108. Pant, S., N. W. Bressloff, A. I. Forrester, and N. Curzen. The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann. Biomed. Eng. 38:1893–1907, 2010.

    Article  PubMed  Google Scholar 

  109. Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model. Mechanobiol. 11:61–82, 2012.

    Article  PubMed  Google Scholar 

  110. Pant, S., G. Limbert, N. P. Curzen, and N. W. Bressloff. Multiobjective design optimisation of coronary stents. Biomaterials 32:7755–7773, 2011.

    Article  CAS  PubMed  Google Scholar 

  111. Papafaklis, M. I., C. V. Bourantas, V. Farooq, R. Diletti, T. Muramatsu, Y. Zhang, D. I. Fotiadis, Y. Onuma, H. M. Garcia Garcia, L. K. Michalis, and P. W. Serruys. In vivo assessment of the three-dimensional haemodynamic micro-environment following drug-eluting bioresorbable vascular scaffold implantation in a human coronary artery: fusion of frequency domain optical coherence tomography and angiography. EuroIntervention 9:890, 2013.

    Article  PubMed  Google Scholar 

  112. Papafaklis, M. I., C. V. Bourantas, P. E. Theodorakis, C. S. Katsouras, D. I. Fotiadis, and L. K. Michalis. Relationship of shear stress with in-stent restenosis: bare metal stenting and the effect of brachytherapy. Int. J. Cardiol. 134:25–32, 2009.

    Article  PubMed  Google Scholar 

  113. Papafaklis, M. I., C. V. Bourantas, P. E. Theodorakis, C. S. Katsouras, K. K. Naka, D. I. Fotiadis, and L. K. Michalis. The effect of shear stress on neointimal response following sirolimus- and paclitaxel-eluting stent implantation compared to bare metal stents in humans. J. Am. Coll. Cardiol. Interv. 3:1181–1189, 2010.

    Article  Google Scholar 

  114. Pelton, A. R., V. Schroeder, M. R. Mitchell, X.-Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.

    Article  CAS  PubMed  Google Scholar 

  115. Pericevic, I., C. Lally, D. Toner, and D. J. Kelly. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med. Eng. Phys. 31:428–433, 2009.

    Article  PubMed  Google Scholar 

  116. Petrini, L., F. Migliavacca, P. Massarotti, S. Schievano, G. Dubini, and F. Auricchio. Computational studies of shape memory alloy behavior in biomedical applications. J. Biomech. Eng. 127:716–725, 2005.

    Article  PubMed  Google Scholar 

  117. Peuster, M., P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Prabhu, S., and S. Hossainy. Modeling of degradation and drug release from a biodegradable stent coating. J. Biomed. Mater. Res. A 80:732–741, 2007.

    Article  PubMed  CAS  Google Scholar 

  119. Puranik, A. S., E. R. Dawson, and N. A. Peppas. Recent advances in drug eluting stents. Int. J. Pharm. 441:665–679, 2013.

    Article  CAS  PubMed  Google Scholar 

  120. Rajamohan, D., R. K. Banerjee, L. H. Back, A. A. Ibrahim, and M. A. Jog. Developing pulsatile flow in a deployed coronary stent. J. Biomech. Eng. 128:347–359, 2006.

    Article  PubMed  Google Scholar 

  121. Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, G. Biamino, and A. Schmidt. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45:312–315, 2005.

    Article  PubMed  Google Scholar 

  122. Schiavone, A., L. G. Zhao, and A. A. Abdel-Wahab. Dynamic simulation of stent deployment—effects of design, material and coating. J. Phys: Conf. Ser. 451:012031, 2013.

    Google Scholar 

  123. Schiavone, A., L. G. Zhao, and A. A. Abdel-Wahab. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery—finite element simulation. Mater. Sci. Eng. C Mater. Biol. Appl. 42:479–488, 2014.

    Article  CAS  PubMed  Google Scholar 

  124. Schijve, J. Fatigue of Structures and Materials. New York: Springer, p. 627, 2008.

    Google Scholar 

  125. Schinhammer, M., A. C. Hänzi, J. F. Löffler, and P. J. Uggowitzer. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 6:1705–1713, 2010.

    Article  CAS  PubMed  Google Scholar 

  126. Shanshan, C., T. Lili, T. Yingxue, Z. Bingchun, and Y. Ke. Study of drug-eluting coating on metal coronary stent. Mater. Sci. Eng. C Mater. Biol. Appl. 33:1476–1480, 2013.

    Article  PubMed  CAS  Google Scholar 

  127. Shazly, T., V. B. Kolachalama, J. Ferdous, J. P. Oberhauser, S. Hossainy, and E. R. Edelman. Assessment of material by-product fate from bioresorbable vascular scaffolds. Ann. Biomed. Eng. 40:955–965, 2012.

    Article  PubMed  Google Scholar 

  128. Sianos, G., M. I. Papafaklis, J. Daemen, S. Vaina, C. A. van Mieghem, R. T. van Domburg, L. K. Michalis, and P. W. Serruys. Angiographic stent thrombosis after routine use of drug-eluting stents in ST-segment elevation myocardial infarction: the importance of thrombus burden. J. Am. Coll. Cardiol. 50:573–583, 2007.

    Article  CAS  PubMed  Google Scholar 

  129. Simard, T., B. Hibbert, F. D. Ramirez, M. Froeschl, Y.-X. Chen, and E. R. O’Brien. The evolution of coronary stents: a brief review. Can. J. Cardiol. 30:35–45, 2014.

    Article  PubMed  Google Scholar 

  130. Soares, J. S., and J. E. Moore. Biomechanical challenges to polymeric biodegradable stents. Ann. Biomed. Eng. 44:560–579, 2016.

    Article  PubMed  Google Scholar 

  131. Son, J. W., U. Kim, J. S. Park, Y. J. Kim, J. S. Jang, T. H. Yang, D. S. Kim, D. K. Kim, S. H. Seol, D. I. Kim, C. W. Nam, S. H. Hur, and K. B. Kim. Clinical outcomes between different stent designs with the same polymer and drug: comparison between the Taxus Express and Taxus Liberte stents. Korean J. Intern. Med. 28:72–80, 2013.

    Article  PubMed  Google Scholar 

  132. Stoeckel, D., A. Pelton, and T. Duerig. Self-expanding nitinol stents: material and design considerations. Eur. Radiol. 14:292–301, 2004.

    Article  PubMed  Google Scholar 

  133. Stone, G. W., S. G. Ellis, D. A. Cox, J. Hermiller, C. O’Shaughnessy, J. T. Mann, M. Turco, R. Caputo, P. Bergin, J. Greenberg, J. J. Popma, and M. E. Russell. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 350:221–231, 2004.

    Article  CAS  PubMed  Google Scholar 

  134. Stone, G. W., S. G. Ellis, D. A. Cox, J. Hermiller, C. O’Shaughnessy, J. T. Mann, M. Turco, R. Caputo, P. Bergin, J. Greenberg, J. J. Popma, M. E. Russell, and T.-I. Investigators. One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: the TAXUS-IV trial. Circulation 109:1942–1947, 2004.

    Article  CAS  PubMed  Google Scholar 

  135. Sweeney, C. A., P. E. McHugh, J. P. McGarry, and S. B. Leen. Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44:202–216, 2012.

    Article  CAS  Google Scholar 

  136. Sweeney, C. A., B. O’Brien, P. E. McHugh, and S. B. Leen. Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials 35:36–48, 2014.

    Article  CAS  PubMed  Google Scholar 

  137. Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material. J. Mech. Behav. Biomed. Mater. 46:244–260, 2015.

    Article  CAS  PubMed  Google Scholar 

  138. Tada, N., R. Virmani, G. Grant, L. Bartlett, A. Black, C. Clavijo, U. Christians, R. Betts, D. Savage, S.-H. Su, J. Shulze, and S. Kar. Polymer-free biolimus a9-coated stent demonstrates more sustained intimal inhibition, improved healing, and reduced inflammation compared with a polymer-coated sirolimus-eluting cypher stent in a porcine model. Circ. Cardiovasc. Interv. 3:174–183, 2010.

    Article  CAS  PubMed  Google Scholar 

  139. Tammareddi, S., G. Sun, and Q. Li. Multiobjective robust optimization of coronary stents. Mater. Des. 90:682–692, 2016.

    Article  CAS  Google Scholar 

  140. Thombre, A. G., and K. J. Himmelstein. A simultaneous transport-reaction model for controlled drug delivery from catalyzed bioerodible polymer matrices. AIChE J. 31:759–766, 1985.

    Article  CAS  Google Scholar 

  141. Timmins, L. H., M. R. Moreno, C. A. Meyer, J. C. Criscione, A. Rachev, and J. E. Moore. Stented artery biomechanics and device design optimization. Med. Biol. Eng. Comput. 45:505–513, 2007.

    Article  PubMed  Google Scholar 

  142. Tsujino, I., J. Ako, Y. Honda, and P. J. Fitzgerald. Drug delivery via nano-, micro and macroporous coronary stent surfaces. Expert Opin. Drug Deliv. 4:287–295, 2007.

    Article  CAS  PubMed  Google Scholar 

  143. Tzafriri, A. R., A. Groothuis, G. S. Price, and E. R. Edelman. Stent elution rate determines drug deposition and receptor-mediated effects. J. Control. Release 161:918–926, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tzafriri, A. R., N. Vukmirovic, V. B. Kolachalama, I. Astafieva, and E. R. Edelman. Lesion complexity determines arterial drug distribution after local drug delivery. J. Control. Release 142:332–338, 2010.

    Article  CAS  PubMed  Google Scholar 

  145. Uematsu, M., Y. Ohara, J. P. Navas, K. Nishida, T. J. Murphy, R. W. Alexander, R. M. Nerem, and D. G. Harrison. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am. J. Physiol. 269:C1371–C1378, 1995.

    CAS  PubMed  Google Scholar 

  146. Virmani, R., G. Guagliumi, A. Farb, G. Musumeci, N. Grieco, T. Motta, L. Mihalcsik, M. Tespili, O. Valsecchi, and F. D. Kolodgie. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109:701–705, 2004.

    Article  PubMed  Google Scholar 

  147. Virmani, R., F. Liistro, G. Stankovic, C. Di Mario, M. Montorfano, A. Farb, F. D. Kolodgie, and A. Colombo. Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation 106:2649–2651, 2002.

    Article  CAS  PubMed  Google Scholar 

  148. Wang, W.-Q., D.-K. Liang, D.-Z. Yang, and M. Qi. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 39:21–32, 2006.

    Article  PubMed  Google Scholar 

  149. Wentzel, J. J., R. Krams, J. C. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van Der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.

    Article  CAS  PubMed  Google Scholar 

  150. Williams, A. R., B. K. Koo, T. J. Gundert, P. J. Fitzgerald, and J. F. LaDisa, Jr. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J. Appl. Physiol. 109(532–540):2010, 1985.

    Google Scholar 

  151. Wilson, G. J., G. Nakazawa, R. S. Schwartz, B. Huibregtse, B. Poff, T. J. Herbst, D. S. Baim, and R. Virmani. Comparison of inflammatory response after implantation of sirolimus- and paclitaxel-eluting stents in porcine coronary arteries. Circulation 120(141–149):141–142, 2009.

    Article  CAS  PubMed  Google Scholar 

  152. Wu, W., L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma, B. Previtali, and F. Migliavacca. Finite element shape optimization for biodegradable magnesium alloy stents. Ann. Biomed. Eng. 38:2829–2840, 2010.

    Article  CAS  PubMed  Google Scholar 

  153. Zhao, J., and L. Alquier. Drug-eluting stents. In: Long Acting Injections and Implants, edited by J. C. Wright, and D. J. Burgess. New York: Springer, 2012, pp. 383–408.

    Chapter  Google Scholar 

  154. Zhao, S., L. Gu, and S. R. Froemming. Effects of arterial strain and stress in the prediction of restenosis risk: computer modeling of stent trials. Biomed. Eng. Lett. 2:158–163, 2012.

    Article  Google Scholar 

  155. Zienkiewicz, O. C., R. L. Taylor, and D. Fox. Computer procedures for finite element analysis. In: The Finite Element Method for Solid and Structural Mechanics7th, edited by O. C. Zienkiewicz, R. L. Taylor, and D. Fox. Oxford: Butterworth-Heinemann, 2014, pp. 589–595.

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was funded in part by grants R01 GM49039 (ERE) from the National Institutes of Health and appointment to the Research Participation Program at FDA administered by Oak Ridge Institute for Science and Education (CC) and internal CBSET funds (ART).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios I. Fotiadis.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Elazer R. Edelman and Dimitrios I. Fotiadis share equally as senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karanasiou, G.S., Papafaklis, M.I., Conway, C. et al. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling. Ann Biomed Eng 45, 853–872 (2017). https://doi.org/10.1007/s10439-017-1806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1806-8

Keywords

Navigation