Skip to main content

Advertisement

Log in

Properties and Mechanobiological Behavior of Bovine Nasal Septum Cartilage

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bovine nasal septum (BNS) is a source of non-load bearing hyaline cartilage. Little information is available on its mechanical and biological properties. The aim of this work was to assess the characteristics of BNS cartilage and investigate its behavior in in vitro mechanobiological experiments. Mechanical tests, biochemical assays, and microscopic assessment were performed for tissue characterization. Compressions tests showed that the tissue is viscoelastic, although values of elastic moduli differ from the ones of other cartilaginous tissues. Water content was 78 ± 1.4%; glycosaminoglycans and collagen contents—measured by spectrophotometric assay and hydroxyproline assay—were 39 ± 5% and 25 ± 2.5% of dry weight, respectively. Goldner’s Trichrome staining and transmission electron microscopy proved isotropic cells distribution and results of earlier cell division. Furthermore, gene expression was measured after uniaxial compression, showing variations depending on compression time as well as trends depending on equilibration time. In conclusion, BNS has been characterized at several levels, revealing that bovine nasal tissue is regionally homogeneous. Results suggest that, under certain conditions, BNS could be used to perform in vitro cartilage loading experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Allen, K. D., and K. A. Athanasiou. Viscoelastic characterization of the porcine temporomandibular joint disc under unconfined compression. J. Biomech. 39:312–322, 2006.

    Article  PubMed  Google Scholar 

  2. Anderson, H. C., and S. W. Sajdera. The fine structure of bovine nasal cartilage. Extraction as a technique to study proteoglycans and collagen in cartilage matrix. J. Cell Biol. 49:650–663, 1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderst, W. J., and S. Tashman. The association between velocity of the center of closest proximity on subchondral bones and osteoarthritis progression. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 27:71–77, 2009.

    Article  Google Scholar 

  4. Archer, C. W., and P. Francis-West. The chondrocyte. Int. J. Biochem. Cell Biol. 35:401–404, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Bansal, P. N., N. S. Joshi, V. Entezari, M. W. Grinstaff, and B. D. Snyder. Contrast enhanced computed tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage. Osteoarthr. Cartil. OARS Osteoarthr. Res. Soc. 18:184–191, 2010.

    Article  CAS  Google Scholar 

  6. Barbosa, I., S. Garcia, V. Barbier-Chassefière, J.-P. Caruelle, I. Martelly, and D. Papy-García. Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13:647–653, 2003.

    Article  CAS  PubMed  Google Scholar 

  7. Bougault, C., A. Paumier, E. Aubert-Foucher, and F. Mallein-Gerin. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression. BMC Biotechnol. 8:71, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bruehlmann, S. B., P. A. Hulme, and N. A. Duncan. In situ intercellular mechanics of the bovine outer annulus fibrosus subjected to biaxial strains. J. Biomech. 37:223–231, 2004.

    Article  PubMed  Google Scholar 

  9. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47:477–486, 1998.

    CAS  PubMed  Google Scholar 

  10. Buckwalter, J. A., H. J. Mankin, and A. J. Grodzinsky. Articular cartilage and osteoarthritis. Instr. Course Lect. 54:465–480, 2005.

    PubMed  Google Scholar 

  11. Bursać, P. M., T. W. Obitz, S. R. Eisenberg, and D. Stamenović. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. J. Biomech. 32:1125–1130, 1999.

    Article  PubMed  Google Scholar 

  12. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(Pt 4):1497–1508, 1995.

    CAS  PubMed  Google Scholar 

  13. Butler, D. L., S. A. Goldstein, and F. Guilak. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122:570–575, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Caligaris, M., and G. A. Ateshian. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr. Cartil. OARS Osteoarthr. Res. Soc. 16:1220–1227, 2008.

    Article  CAS  Google Scholar 

  15. Colombo, V., M. Cadová, and L. M. Gallo. Mechanical behavior of bovine nasal cartilage under static and dynamic loading. J. Biomech. 46:2137–2144, 2013.

    Article  PubMed  Google Scholar 

  16. Colombo, V., M. R. Correro, R. Riener, F. E. Weber, and L. M. Gallo. Design, construction and validation of a computer controlled system for functional loading of soft tissue. Med. Eng. Phys. 33:677–683, 2011.

    Article  PubMed  Google Scholar 

  17. Correro-Shahgaldian, M. R., V. Colombo, N. D. Spencer, F. E. Weber, T. Imfeld, and L. M. Gallo. Coupling plowing of cartilage explants with gene expression in models for synovial joints. J. Biomech. 44:2472–2476, 2011.

    Article  PubMed  Google Scholar 

  18. Correro-Shahgaldian, M. R., C. Ghayor, N. D. Spencer, F. E. Weber, and L. M. Gallo. A model system of the dynamic loading occurring in synovial joints: the biological effect of plowing on pristine cartilage. Cells Tissues Organs 199:364–372, 2014.

    Article  PubMed  Google Scholar 

  19. Davidson, R. K., J. G. Waters, L. Kevorkian, C. Darrah, A. Cooper, S. T. Donell, and I. M. Clark. Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res. Ther. 8:R124, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  20. del Pozo, R., E. Tanaka, M. Tanaka, M. Okazaki, and K. Tanne. The regional difference of viscoelastic property of bovine temporomandibular joint disc in compressive stress-relaxation. Med. Eng. Phys. 24:165–171, 2002.

    Article  PubMed  Google Scholar 

  21. Detamore, M. S., and K. A. Athanasiou. Structure and function of the temporomandibular joint disc: implications for tissue engineering. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 61:494–506, 2003.

    Article  Google Scholar 

  22. DiSilvestro, M. R., Q. Zhu, and J. K. Suh. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II–Effect of variable strain rates. J. Biomech. Eng. 123:198–200, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. El-Ayoubi, R., C. DeGrandpré, R. DiRaddo, A.-M. Yousefi, and P. Lavigne. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J. Biomater. Appl. 25:429–444, 2011.

    Article  CAS  PubMed  Google Scholar 

  24. Fitzgerald, J. B., M. Jin, D. Dean, D. J. Wood, M. H. Zheng, and A. J. Grodzinsky. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J. Biol. Chem. 279:19502–19511, 2004.

    Article  CAS  PubMed  Google Scholar 

  25. Fitzgerald, J. B., M. Jin, and A. J. Grodzinsky. Shear and compression differentially regulate clusters of functionally related temporal transcription patterns in cartilage tissue. J. Biol. Chem. 281:24095–24103, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Flam, E. The tensile and flexural properties of bovine nasal cartilage. J. Biomed. Mater. Res. 8:277–282, 1974.

    Article  CAS  PubMed  Google Scholar 

  27. Fontenot, M. G. Viscoelastic properties of human TMJ discs and disc replacement materials. J. Dent. Res. 64:163, 1985.

    Google Scholar 

  28. Fung, Y. C. First Course in Continuum Mechanics. Englewood Cliffs: Prentice Hall, p. 311, 1993.

    Google Scholar 

  29. Gallo, L. M., L. R. Iwasaki, Y. M. Gonzalez, H. Liu, D. B. Marx, and J. C. Nickel. Diagnostic group differences in temporomandibular joint energy densities. Orthod. Craniofac. Res. 18(Suppl 1):164–169, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gallo, L. M., J. C. Nickel, L. R. Iwasaki, and S. Palla. Stress-field translation in the healthy human temporomandibular joint. J. Dent. Res. 79:1740–1746, 2000.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, A. H., B. M. Baker, G. A. Ateshian, and R. L. Mauck. Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels. Eur. Cell. Mater. 24:29–45, 2012.

    PubMed  Google Scholar 

  32. Hung, C. T., R. L. Mauck, C. C. B. Wang, E. G. Lima, and G. A. Ateshian. A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann. Biomed. Eng. 32:35–49, 2004.

    Article  PubMed  Google Scholar 

  33. Hunziker, E. B., W. Herrmann, and R. K. Schenk. Improved cartilage fixation by ruthenium hexammine trichloride (RHT). A prerequisite for morphometry in growth cartilage. J. Ultrastruct. Res. 81:1–12, 1982.

    Article  CAS  PubMed  Google Scholar 

  34. Ignat’eva, N. Y., E. N. Sobol, S. V. Averkiev, V. V. Lunin, T. E. Grokhovskaya, V. N. Bagratashvili, and E. S. Yantsen. Thermal stability of collagen II in cartilage. Dokl. Biochem. Biophys. 395:96–98, 2004.

    Article  PubMed  Google Scholar 

  35. Johannessen, W., and D. M. Elliott. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 30:E724–729, 2005.

    Article  PubMed  Google Scholar 

  36. Jurvelin, J. S., M. D. Buschmann, and E. B. Hunziker. Optical and mechanical determination of Poisson’s ratio of adult bovine humeral articular cartilage. J. Biomech. 30:235–241, 1997.

    Article  CAS  PubMed  Google Scholar 

  37. Jurvelin, J. S., M. D. Buschmann, and E. B. Hunziker. Mechanical anisotropy of the human knee articular cartilage in compression. Proc. Inst. Mech. Eng. [H] 217:215–219, 2003.

    Article  CAS  Google Scholar 

  38. Kelly, T.-A. N., K. W. Ng, C. C.-B. Wang, G. A. Ateshian, and C. T. Hung. Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J. Biomech. 39:1489–1497, 2006.

    Article  PubMed  Google Scholar 

  39. Kempson, G. E., H. Muir, S. A. Swanson, and M. A. Freeman. Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochim. Biophys. Acta 215:70–77, 1970.

    Article  CAS  PubMed  Google Scholar 

  40. Kim, K.-W., M. E. Wong, J. F. Helfrick, J. B. Thomas, and K. A. Athanasiou. Biomechanical tissue characterization of the superior joint space of the porcine temporomandibular joint. Ann. Biomed. Eng. 31:924–930, 2003.

    Article  PubMed  Google Scholar 

  41. Kock, L. M., A. Ravetto, C. C. van Donkelaar, J. Foolen, P. J. Emans, and K. Ito. Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulations. Osteoarthr. Cartil. OARS Osteoarthr. Res. Soc. 18:1528–1535, 2010.

    Article  CAS  Google Scholar 

  42. Korhonen, R. K., M. S. Laasanen, J. Töyräs, J. Rieppo, J. Hirvonen, H. J. Helminen, and J. S. Jurvelin. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35:903–909, 2002.

    Article  CAS  PubMed  Google Scholar 

  43. Kuo, J., L. Zhang, T. Bacro, and H. Yao. The region-dependent biphasic viscoelastic properties of human temporomandibular joint discs under confined compression. J. Biomech. 43:1316–1321, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee, D. A., M. M. Knight, J. F. Bolton, B. D. Idowu, M. V. Kayser, and D. L. Bader. Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J. Biomech. 33:81–95, 2000.

    Article  CAS  PubMed  Google Scholar 

  45. Lin, P. M., C.-T. C. Chen, and P. A. Torzilli. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr. Cartil. OARS Osteoarthr. Res. Soc. 12:485–496, 2004.

    Article  Google Scholar 

  46. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods San Diego Calif. 25:402–408, 2001.

    Article  CAS  Google Scholar 

  47. Makris, E. A., P. Hadidi, and K. A. Athanasiou. The knee meniscus: structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411–7431, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matthews, B. F. Composition of articular cartilage in osteoarthritis; changes in collagen/chondroitin-sulphate ratio. Br. Med. J. 2:660–661, 1953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Article  CAS  PubMed  Google Scholar 

  50. Nesic, D., R. Whiteside, M. Brittberg, D. Wendt, I. Martin, and P. Mainil-Varlet. Cartilage tissue engineering for degenerative joint disease. Adv. Drug Deliv. Rev. 58:300–322, 2006.

    Article  CAS  PubMed  Google Scholar 

  51. Otsuki, S., D. C. Brinson, L. Creighton, M. Kinoshita, R. L. Sah, D. D’Lima, and M. Lotz. The effect of glycosaminoglycan loss on chondrocyte viability: a study on porcine cartilage explants. Arthritis Rheum. 58:1076–1085, 2008.

    Article  PubMed  Google Scholar 

  52. Parsons, J. R., and J. Black. The viscoelastic shear behavior of normal rabbit articular cartilage. J. Biomech. 10:21–29, 1977.

    Article  CAS  PubMed  Google Scholar 

  53. Pastoureau, P., and A. Chomel. Methods for cartilage and subchondral bone histomorphometry. Methods Mol. Med. 101:79–91, 2004.

    PubMed  Google Scholar 

  54. Périn, J. P., F. Bonnet, and P. Jollès. Comparative studies on human and bovine nasal cartilage proteoglycan complex components. Mol. Cell. Biochem. 21:71–82, 1978.

    Article  PubMed  Google Scholar 

  55. Reddy, G. K., and C. S. Enwemeka. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 29:225–229, 1996.

    Article  CAS  PubMed  Google Scholar 

  56. Reiter, D. A., P.-C. Lin, K. W. Fishbein, and R. G. Spencer. Multicomponent T2 relaxation analysis in cartilage. Magn. Reson. Med. 61:803–809, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Roughley, P. J. The structure and function of cartilage proteoglycans. Eur. Cell. Mater. 12:92–101, 2006.

    CAS  PubMed  Google Scholar 

  58. Schätti, O. R., M. Marková, P. A. Torzilli, and L. M. Gallo. Mechanical loading of cartilage explants with compression and sliding motion modulates gene expression of lubricin and catabolic enzymes. Cartilage 6:185–193, 2015.

    Article  PubMed  Google Scholar 

  59. Stoddart, M. J., L. Ettinger, and H. J. Häuselmann. Enhanced matrix synthesis in de novo, scaffold free cartilage-like tissue subjected to compression and shear. Biotechnol. Bioeng. 95:1043–1051, 2006.

    Article  CAS  PubMed  Google Scholar 

  60. Sweet, M. B., E. J. Thonar, and A. R. Immelman. Regional distribution of water and glycosaminoglycan in immature articular cartilage. Biochim. Biophys. Acta 500:173–186, 1977.

    Article  CAS  PubMed  Google Scholar 

  61. Sweigart, M. A., and K. A. Athanasiou. Biomechanical characteristics of the normal medial and lateral porcine knee menisci. Proc. Inst. Mech. Eng. [H] 219:53–62, 2005.

    Article  CAS  Google Scholar 

  62. Tanaka, E., M. Hirose, E. Yamano, D. A. Dalla-Bona, R. Fujita, M. Tanaka, T. van Eijden, and K. Tanne. Age-associated changes in viscoelastic properties of the bovine temporomandibular joint disc. Eur. J. Oral Sci. 114:70–73, 2006.

    Article  PubMed  Google Scholar 

  63. Tanaka, E., M. Tanaka, Y. Miyawaki, and K. Tanne. Viscoelastic properties of canine temporomandibular joint disc in compressive load-relaxation. Arch. Oral Biol. 44:1021–1026, 1999.

    Article  CAS  PubMed  Google Scholar 

  64. Torzilli, P. A., M. Bhargava, and C. T. Chen. Mechanical loading of articular cartilage reduces IL-1-induced enzyme expression. Cartilage 2:364–373, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Torzilli, P. A., R. Grigiene, C. Huang, S. M. Friedman, S. B. Doty, A. L. Boskey, and G. Lust. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech. 30:1–9, 1997.

    Article  CAS  PubMed  Google Scholar 

  66. Venn, M., and A. Maroudas. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann. Rheum. Dis. 36:121–129, 1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Woodfield, T. B. F., J. Malda, J. de Wijn, F. Péters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161, 2004.

    Article  CAS  PubMed  Google Scholar 

  68. Xia, Y., S. Zheng, M. Szarko, and J. Lee. Anisotropic properties of bovine nasal cartilage. Microsc. Res. Tech. 75:300–306, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yang, S., K. F. Leong, Z. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7:679–689, 2001.

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, S., and Y. Xia. Effect of phosphate electrolyte buffer on the dynamics of water in tendon and cartilage. NMR Biomed. 22:158–164, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Stefan Erni for his technical help. The study was supported by Grant No. 325200-110067 from the Swiss National Science Foundation, Bern, Switzerland.

Conflict of interest

The authors certify that the research described in the manuscript is free of conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Colombo.

Additional information

Associate Editor Michael Detamore oversaw the review of this article.

Appendix

Appendix

Mechanical Model of the Tissue

A linear solid model (Kelvin model) was chosen to characterize the tissue. This model is a combination of a linear spring in parallel with a series of a linear spring and a dashpot with a step response such as:

$$\sigma (t) = E_{R} \left[ {1 - \left( {1 - \frac{{\tau_{\sigma } }}{{\tau_{\varepsilon } }}} \right)e^{{{\raise0.7ex\hbox{${ - t}$} \!\mathord{\left/ {\vphantom {{ - t} {\tau_{\varepsilon } }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\tau_{\varepsilon } }$}}}} } \right]\varepsilon$$
(1)

where the stress σ(t) and the strain ε are related through the relaxed elastic modulus E R and the time constants τ σ and τ ε . The instantaneous elastic modulus E 0 can be written as:

$$E_{0} = E_{R} \frac{{\tau_{\sigma } }}{{\tau_{\varepsilon } }}$$
(2)

Quantification of GAG

The method used was modified from the literature.6 We incubated 100 μL of diluted sample aliquots (papain digested cartilage) with 1 mL of DMMB solution (16 mg/L DMMB in 0.2 M GuHCl, 1 g/L sodium formate and 1 mL/L formic acid) and mixed continuously for 30 min in order to promote the formation of the GAG-DMMB complex. After centrifugation at 12,000 g for 10 min, the precipitated complex was resuspended in 1 mL water and again centrifuged as before, in order to remove any dye excess. The complex was finally dissociated by adding 800 μL of decomplexation solution (50 mM sodium acetate buffer, pH 6.8, containing 10% n-propanol and 4 M GuHCl). The absorbance of 200 μL solution was read at 656 nm using a spectrophotometer plate reader (Synergy HT multi-Mode Microplate Reader, BioTek Instruments Inc., Winooski VT, USA). GAG concentrations were calculated on the basis of the Chondroitin-sulphate-A standard curve.

Quantification of Collagen

Collagen content was quantified by means of a hydroxyproline assay with some modifications.55 100 μL of diluted papain digested cartilage as well as 100 μL of standard hydroxyproline (Hyp) solution (2–40 μg/mL) were mixed with 100 μL of 4 N sodium hydroxide (1:1 v/v), gently mixed and hydrolyzed by autoclaving at 120 °C for 20 min. Autoclaved samples (100 μL) as well as standard solution (100 μL) were mixed with 425 μL of chloramine-T solution (0.056 M chloramine-T in 50% n-propanol) and incubated at room temperature for 25 min. Then, 475 µL of Ehrlich’s solution (1 M p-dimethylaminobenzaldehyde in n-propanol/perchloric acid (2:1 v/v)) were added to the oxidized samples or to the standard solution and incubated at 64 °C for 20 min. Absorbance was read at 550 nm in a plate reader and the amount of Hyp in the samples was determined by comparison with a Hyp standard curve. Thereafter, since Hyp represents approximately 14.4% of the aminoacidic composition of collagen, a factor of 6.94 was applied to calculate the total collagen content from the measured Hyp quantity.

RNA Extraction

The methods used were described in the literature.19 Finely sliced cartilage sub-explants (≈50 mg) were placed in Eppendorf tubes and homogenized twice for 1 min in 800 μL TRIzol reagent (Invitrogen Inc., Carlsbad CA, USA). After 5 min equilibration at room temperature, 200 μL of chloroform were added and the tubes were vigorously shaken, mixed and incubated for 2 min at room temperature. Following centrifugation at 9500×g for 30 min at 4 °C, the obtained aqueous phases were recovered, extracted with 200 μL of chloroform and treated as previously described. The recovered supernatants were transferred into 2 mL tubes, gently mixed with 500 μL of isopropanol, incubated for 10 min at room temperature and consecutively centrifuged at 9500×g for 40 min at 4 °C. The supernatants were discarded and the pellets resuspended in 900 μL of lysis buffer (RNeasy Mini Kit®; Qiagen GmbH, Hilden, Germany) supplemented with 90 μL β-mercaptoethanol (Sigma-Aldrich Inc., St. Louis MO, USA). After adding 900 μL ethanol (75%), the RNA was purified using Qiagen RNeasy mini kit (Qiagen GmbH, Hilden, Germany) whereas genomic DNA was digested with DNase kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correro-Shahgaldian, M.R., Introvigne, J., Ghayor, C. et al. Properties and Mechanobiological Behavior of Bovine Nasal Septum Cartilage. Ann Biomed Eng 44, 1821–1831 (2016). https://doi.org/10.1007/s10439-015-1481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1481-6

Keywords

Navigation