Skip to main content

Advertisement

Log in

Integrated Stent Models Based on Dimension Reduction: Review and Future Perspectives

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stent modeling represents a challenging task from both the theoretical and numerical viewpoints, due to its multi-physics nature and to the complex geometrical configuration of these devices. In this light, dimensional model reduction enables a comprehensive geometrical and physical description of stenting at affordable computational costs. In this work, we aim at reviewing dimensional model reduction of stent mechanics and drug release. Firstly, we address model reduction techniques for the description of stent mechanics, aiming to illustrate how a three-dimensional stent model can be transformed into a collection of interconnected one-dimensional rods, called a “stent net”. Secondly, we review available model reduction methods similarly applied to drug release, in which the “stent net” concept is adopted for modeling of drug elution. As a result, drug eluting stents are described as a distribution of concentrated drug release sources located on a graph that fully represents the stent geometry. Lastly, new results about the extension of these model reduction approaches to biodegradable stents are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Antman, S. Nonlinear Problems of Elasticity. New York: Springer, 2005.

    Google Scholar 

  2. Babuška, I., and M. Suri. Locking effects in the finite element approximation of elasticity problems. Numerische Mathematik 62(1):439–463, 1992.

    Article  Google Scholar 

  3. Balakrishnan, B., J. F. Dooley, G. Kopia, and E. R. Edelman. Intravascular drug release kinetics dictate arterial drug deposition, retention, and distribution. J. Control. Release 123(2):100–108, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Biscari, P., S. Minisini, D. Pierotti, G. Verzini, and P. Zunino. Controlled release with finite dissolution rate. SIAM J. Appl. Math. 71(3):731–752, 2011.

    Article  Google Scholar 

  5. Bozsak, F., J. M. Chomaz, and A. I. Barakat. Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall. Biomech. Model. Mechanobiol. 13(2):327–347, 2014.

    Article  PubMed  Google Scholar 

  6. Caiazzo, A., D. Evans, J. L. Falcone, J. Hegewald, E. Lorenz, B. Stahl, D. Wang, J. Bernsdorf, B. Chopard, J. Gunn, R. Hose, M. Krafczyk, P. Lawford, R. Smallwood, D. Walker, and A. Hoekstra. A complex automata approach for in-stent restenosis: two-dimensional multiscale modelling and simulations. J. Comput. Sci. 2(1):9–17, 2011.

    Article  Google Scholar 

  7. Čanić, S., and J. Tambača. Cardiovascular stents as PDE nets: 1D vs. 3D. IMA J. Appl. Math. 77(6):748–770, 2012.

    Article  Google Scholar 

  8. Caputo, M., C. Chiastra, C. Cianciolo, E. Cutrì, G. Dubini, J. Gunn, B. Keller, F. Migliavacca, and P. Zunino. Simulation of oxygen transfer in stented arteries and correlation with in-stent restenosis. Int. J. Numer. Methods Biomed. Eng. 29(12):1373–1387, 2013.

    Article  CAS  Google Scholar 

  9. Chiastra, C., S. Morlacchi, D. Gallo, U. Morbiducci, R. Cárdenes, I. Larrabide, and F. Migliavacca. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J. R. Soc. Interface 10(84):20130193, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chiastra, C., S. Morlacchi, S. Pereira, G. Dubini, and F. Migliavacca. Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method. Eur. J. Mech. B 35:76–84, 2012.

    Article  Google Scholar 

  11. Cohen, D. S., and T. Erneux. Controlled drug release asymptotics. SIAM J. Appl. Math. 58(4):1193–1204, 1998.

    Article  Google Scholar 

  12. Cutrì, E., P. Zunino, S. Morlacchi, C. Chiastra, and F. Migliavacca. Drug delivery patterns for different stenting techniques in coronary bifurcations: a comparative computational study. Biomech. Model. Mechanobiol. 12(4):657–669, 2013.

    Article  PubMed  Google Scholar 

  13. D’Angelo, C., and A. Quarteroni. On the coupling of 1D and 3D diffusion-reaction equations. Application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18(8):1481–1504, 2008.

    Article  Google Scholar 

  14. D’Angelo, C., and P. Zunino. Multiscale models of drug delivery by thin implantable devices. Appl. Ind. Math. Italy III Ser. Adv. Math. Appl. Sci. 82:298–310, 2009.

    Google Scholar 

  15. D’Angelo, C., P. Zunino, A. Porpora, S. Morlacchi, and F. Migliavacca. Model reduction strategies enable computational analysis of controlled drug release from cardiovascular stents? SIAM J. Appl. Math. 71(6):2312–2333, 2011.

    Article  Google Scholar 

  16. Delfour, M. C., A. Garon, and V. Longo. Modeling and design of coated stents to optimize the effect of the dose. SIAM J. Appl. Math. 65(3):858–881, 2005.

    Article  Google Scholar 

  17. Ellwein, L. M., H. Otake, T. J. Gundert, B. K. Koo, T. Shinke, Y. Honda, J. Shite, and J. F. LaDisa, Jr. Optical coherence tomography for patient-specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery. Cardiovasc. Eng. Technol. 2(3):212–227, 2011.

    Article  Google Scholar 

  18. Foin, N., R. Torii, P. Mortier, M. De Beule, N. Viceconte, P. H. Chan, J. E. Davies, X. Y. Xu, R. Krams, and C. Di Mario. Kissing balloon or sequential dilation of the side branch and main vessel for provisional stenting of bifurcations: lessons from micro-computed tomography and computational simulations. JACC Cardiovasc. Interv. 5(1):47–56, 2012.

    Article  PubMed  Google Scholar 

  19. Formaggia, L., S. Minisini, and P. Zunino. Modeling polymeric controlled drug release and transport phenomena in the arterial tissue. Math. Models Methods Appl. Sci. 20(10):1759–1786, 2010.

    Article  CAS  Google Scholar 

  20. FreeFem, version 3.12-0 (2d and 3d). http://www.freefem.org/ff++/

  21. Frenning, G. Theoretical investigation of drug release from planar matrix systems: effects of a finite dissolution rate. J. Control. Release 92(3):331–339, 2003.

    Article  CAS  PubMed  Google Scholar 

  22. Frenning, G. Theoretical analysis of the release of slowly dissolving drugs from spherical matrix systems. J. Control. Release 95(1):109–117, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Gastaldi, D., S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, and F. Migliavacca. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9(5):551–561, 2010.

    Article  PubMed  Google Scholar 

  24. Gijsen, F. J. H., F. Migliavacca, S. Schievano, L. Socci, L. Petrini, A. Thury, J. J. Wentzel, A. F. W. van der Steen, P. W. S. Serruys, and G. Dubini. Simulation of stent deployment in a realistic human coronary artery. BioMed. Eng. Online 7:23, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Grassi, M., G. Pontrelli, L. Teresi, G. Grassi, L. Comel, A. Ferluga, and L. Galasso. Novel design of drug delivery in stented arteries: a numerical comparative study. Math. Biosci. Eng. 6(3):493–508, 2009.

    Article  PubMed  Google Scholar 

  26. Griso, G. Asymptotic behavior of structures made of curved rods. Anal. Appl. 06(01):11–22, 2008.

    Article  Google Scholar 

  27. Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 50:874–875, 1961.

    Article  CAS  PubMed  Google Scholar 

  28. Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate. J. Pharm. Sci. 52:1145–1149, 1963.

    Article  CAS  PubMed  Google Scholar 

  29. Horner, M., S. Joshi, V. Dhruva, S. Sett, and S. F. C. Stewart. A two-species drug delivery model is required to predict deposition from drug-eluting stents. Cardiovasc. Eng. Technol. 1(3):225–234, 2010.

    Article  Google Scholar 

  30. Hose, D. R., A. J. Narracott, B. Griffiths, S. Mahmood, J. Gunn, D. Sweeney, and P. V. Lawford. A thermal analogy for modelling drug elution from cardiovascular stents. Comput. Methods Biomech. Biomed. Eng. 7(5):257–264, 2004.

    Article  CAS  Google Scholar 

  31. Hossainy, S., and S. Prabhu. A mathematical model for predicting drug release from a biodurable drug-eluting stent coating. J. Biomed. Mater. Res. Part A 87(2):487–493, 2008.

    Article  Google Scholar 

  32. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3):407–430, 2002.

    Article  Google Scholar 

  33. Hwang, C. W., D. Wu, and E. R. Edelman. Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104(5):600–605, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Jurak, M. T., and J. Tambaca. Linear curved rod model. General curve. Math. Models Methods Appl. Sci. 11(7):1237–1252, 2001.

    Article  Google Scholar 

  35. Karner, G., and K. Perktold. Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study. J. Biomech. 33(6):709–715, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Karner, G., K. Perktold, and H. P. Zehentner. Computational modeling of macromolecule transport in the arterial wall. Comput. Methods Biomech. Biomed. Eng. 4(6):491–504, 2001.

    Article  Google Scholar 

  37. Kolandaivelu, K., B. B. Leiden, and E. R. Edelman. Predicting response to endovascular therapies: dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty. J. Biomech. 47(4):908–921, 2014.

    Article  PubMed  Google Scholar 

  38. Li, J., Q. Luo, Z. Xie, Y. Li, and Y. Zeng. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 25(4):333–337, 2010.

    Article  PubMed  Google Scholar 

  39. Lovich, M. A., and E. R. Edelman. Computational simulations of local vascular heparin deposition and distribution. Am. J. Physiol. Heart Circ. Physiol. 271(5):H2014–H2024, 1996.

    CAS  Google Scholar 

  40. Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27(9):1988–2000, 2006.

    Article  CAS  PubMed  Google Scholar 

  41. McGinty, S. A decade of modelling drug release from arterial stents. Math. Biosci. 257:80–90, 2014.

    Article  CAS  PubMed  Google Scholar 

  42. McGinty, S., S. McKee, R. M. Wadsworth, and C. McCormick. Modelling drug-eluting stents. Math. Med. Biol. 28(1):1–29, 2011.

    Article  PubMed  Google Scholar 

  43. McGinty, S., S. McKee, R. M. Wadsworth, and C. McCormick. Modeling arterial wall drug concentrations following the insertion of a drug-eluting stent. SIAM J. Appl. Math. 73(6):2004–2028, 2013.

    Article  Google Scholar 

  44. Menzel, A., and E. Kuhl. Frontiers in growth and remodeling. Mech. Res. Commun. 42:1–14, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Migliavacca, F., F. Gervaso, M. Prosi, P. Zunino, S. Minisini, L. Formaggia, and G. Dubini. Expansion and drug elution model of a coronary stent. Comput. Methods Biomech. Biomed. Eng. 10(1):63–73, 2007.

    Article  CAS  Google Scholar 

  46. Morlacchi, S., C. Chiastra, E. Cutrì, P. Zunino, F. Burzotta, L. Formaggia, G. Dubini, and F. Migliavacca. Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and Tryton-based culotte to treat bifurcations: a virtual simulation study. EuroIntervention 9(12):1441–1453, 2014.

    Article  PubMed  Google Scholar 

  47. Morlacchi, S., B. Keller, P. Arcangeli, M. Balzan, F. Migliavacca, G. Dubini, J. Gunn, N. Arnold, A. Narracott, D. Evans, and P. Lawford. Hemodynamics and in-stent restenosis: micro-CT images, histology, and computer simulations. Ann. Biomed. Eng. 39(10):2615–2626, 2011.

    Article  PubMed  Google Scholar 

  48. Morlacchi, S., and F. Migliavacca. Modeling stented coronary arteries: where we are, where to go. Ann. Biomed. Eng. 41(7):1428–1444, 2013.

    Article  PubMed  Google Scholar 

  49. Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 47(4):899–907, 2014.

    Article  PubMed  Google Scholar 

  50. Mortier, P., G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, P. Verdonck, and B. Verhegghe. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38(1):88–99, 2010.

    Article  PubMed  Google Scholar 

  51. Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, F. D. Kolodgie, and R. Virmani. Incidence and predictors of drug-eluting stent fracture in human coronary artery: a pathologic analysis. J. Am. Coll. Cardiol. 54(21):1924–1931, 2009.

    Article  PubMed  Google Scholar 

  52. Perktold, K., M. Prosi, and P. Zunino. Mathematical models of mass transfer in the vascular walls. Model. Simulat. Appl. 1:244–278, 2009.

    Google Scholar 

  53. Pontrelli, G., and F. de Monte. Mass diffusion through two-layer porous media: an application to the drug-eluting stent. Int. J. Heat Mass Transf. 50(17–18):3658–3669, 2007.

    Article  CAS  Google Scholar 

  54. Pontrelli, G., and F. De Monte. Modeling of mass dynamics in arterial drug-eluting stents. J. Porous Media 12(1):19–28, 2009.

    Article  Google Scholar 

  55. Pontrelli, G., and F. de Monte. A multi-layer porous wall model for coronary drug-eluting stents. Int. J. Heat Mass Transf. 53(19–20):3629–3637, 2010.

    Article  CAS  Google Scholar 

  56. Pontrelli, G., and F. de Monte. A two-phase two-layer model for transdermal drug delivery and percutaneous absorption. Math. Biosci. 257:96–103, 2014.

    Article  CAS  PubMed  Google Scholar 

  57. Prabhu, S., and S. Hossainy. Modeling of degradation and drug release from a biodegradable stent coating. J. Biomed. Mater. Res. Part A 80(3):732–741, 2007.

    Article  Google Scholar 

  58. Prosi, M., P. Zunino, K. Perktold, and A. Quarteroni. Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech. 38(4):903–917, 2005.

    Article  CAS  PubMed  Google Scholar 

  59. Sakharov, D. V., L. V. Kalachev, and D. C. Rijken. Numerical simulation of local pharmacokinetics of a drug after intravascular delivery with an eluting stent. J. Drug Target. 10(6):507–513, 2002.

    Article  CAS  PubMed  Google Scholar 

  60. Soares, J. S., J. E. Moore, and K. R. Rajagopal. Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO J. 54(3):295–301, 2008.

    Article  CAS  PubMed  Google Scholar 

  61. Soares, J. S., J. E. Moore, and K. R. Rajagopal. Modeling of deformation-accelerated breakdown of polylactic acid biodegradable stents. J. Med. Device 4(4):041007, 2010.

    Article  Google Scholar 

  62. Soares, J. S., and P. Zunino. A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks. Biomaterials 31(11):3032–3042, 2010.

    Article  CAS  PubMed  Google Scholar 

  63. Tambača, J. A model of irregular curved rods. In: Applied Mathematics and Scientific Computing, edited by Z. Drmač, V. Hari, and et al. New York: Springer, 2003, pp. 289–299.

    Google Scholar 

  64. Tambača, J., S. Čanić, and D. Paniagua. A comparison between fractured Xience-like and Palmaz-like stents using a novel computational model. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC, 2009.

  65. Tambača, J., M. Kosor, S. Čanic, and D. Paniagua. Mathematical modeling of vascular stents. SIAM J. Appl. Math. 70(6):1922–1952, 2010.

    Article  Google Scholar 

  66. Tambača, J., and I. Velčić. Derivation of the nonlinear bending-torsion model for a junction of elastic rods. Proc. R. Soc. Edinb. Sect. A 142(3):633–664, 2012.

    Article  Google Scholar 

  67. Tambača, J., and B. Žugec. One-dimensional quasistatic model of biodegradable elastic curved rods. Zeitschrift fur Angewandte Mathematik und Physik. 2015.

  68. Tzafriri, A. R., A. Groothuis, G. S. Price, and E. R. Edelman. Stent elution rate determines drug deposition and receptor-mediated effects. J. Control. Release 161(3):918–926, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Tzafriri, A. R., A. D. Levin, and E. R. Edelman. Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery. Cell Prolif. 42(3):348–363, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Vairo, G., M. Cioffi, R. Cottone, G. Dubini, and F. Migliavacca. Drug release from coronary eluting stents: a multidomain approach. J. Biomech. 43(8):1580–1589, 2010.

    Article  PubMed  Google Scholar 

  71. Wang, S., and K. Vafai. Analysis of the effect of stent emplacement on LDL transport within an artery. Int. J. Heat Mass Transf. 64:1031–1040, 2013.

    Article  Google Scholar 

  72. Zhu, X., D. W. Pack, and R. D. Braatz. Modelling intravascular delivery from drug-eluting stents with biodurable coating: investigation of anisotropic vascular drug diffusivity and arterial drug distribution. Comput. Methods Biomech. Biomed. Eng. 17(3):187–198, 2014.

    Article  Google Scholar 

  73. Žugec, B. Biodegradable elastic stent model. Ph.D.University of Zagreb. 2014.

  74. Zunino, P. Multidimensional pharmacokinetic models applied to the design of drug-eluting stents. Cardiovasc. Eng. 4(2):181–191, 2004.

    Article  Google Scholar 

  75. Zunino, P., C. D’Angelo, L. Petrini, C. Vergara, C. Capelli, and F. Migliavacca. Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput. Methods Appl. Mech. Eng. 198(45–46):3633–3644, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Zunino.

Additional information

Associate Editor Sean McGinty oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zunino, P., Tambača, J., Cutrì, E. et al. Integrated Stent Models Based on Dimension Reduction: Review and Future Perspectives. Ann Biomed Eng 44, 604–617 (2016). https://doi.org/10.1007/s10439-015-1459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1459-4

Keywords

Navigation