Skip to main content
Log in

Challenges in the Modeling of Wound Healing Mechanisms in Soft Biological Tissues

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Numerical models have become one of the most powerful tools in biomechanics and mechanobiology allowing highly detailed simulations. One of the fields in which they have broadly evolved during the last years is in soft tissue modeling. Particularly, wound healing in the skin is one of the processes that has been approached by computational models due to the difficulty of performing experimental investigations. During the last decades wound healing simulations have evolved from numerical models which considered only a few number of variables and simple geometries to more complex approximations that take into account a higher number of factors and reproduce more realistic geometries. Moreover, thanks to improved experimental observations, a larger number of processes, such as cellular stress generation or vascular growth, that take place during wound healing have been identified and modeled. This work presents a review of the most relevant wound healing approximations, together with an identification of the most relevant criteria that can be used to classify them. In addition, and looking towards the actual state of the art in the field, some future directions, challenges and improvements are analyzed for future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Annaidh, A. N., K. Bruyere, M. Destrade, M. D. Gilchrist, C. Maurini, M. Ottenio, and G. Saccomandi. Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin. Ann. Biomed. Eng. 40(8):1666–1678, 2012.

  2. Annaidh, A. N., K. Bruyere, M. Destrade, M. D. Gilchrist, and M. Ottenio. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5(1):139–148, 2012.

  3. Boyer, G., H. Zahouani, B. A. Le, and L. Laquieze. In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation. 2007 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols. 1–16, 2007, pp. 4584–4587.

  4. Brugues, A., E. Anon, V. Conte, J. H. Veldhuis, M. Gupta, J. Colombelli, J. J. Munoz, G. W. Brodland, B. Ladoux, and X. Trepat. Forces driving epithelial wound healing. Nat. Phys. 10(9):683–690, 2014.

  5. Buganza Tepole, A., A. K. Gosain, and E. Kuhl. Computational modeling of skin: Using stress profiles as predictor for tissue necrosis in reconstructive surgery. Comput. Struct. 143(0):32–39, 2014.

  6. Cheung, J. T. M., M. Zhang, A. K. L. Leung, and Y. B. Fan. Three-dimensional finite element analysis of the foot during standing—a material sensitivity study rid f-8331-2011. J. Biomech. 38(5):1045–1054, 2005.

  7. Clark, R. A. F. Overview and general considerations of wound repair. In: The Molecular and Cellular Biology of Wound Repair, edited by R. A. F. Clark and P. M. Henson. Berlin, USA: Springer, 1988, pp. 3–33. ISBN 978-1-4613-5725-4. doi:10.1007/978-1-4615-1795-5_1.

  8. Coulombe, P. A. Wound epithelialization: accelerating the pace of discovery. J. Invest. Dermatol. 121(2):219–230, 2003.

  9. Dale, P. D., P. K. Maini, and J. A. Sherratt. Mathematical-modeling of corneal epithelial wound-healing. Math. Biosci. 124(2):127–147, 1994.

  10. Dallon, J. C., E. J. Evans, and H. P. Ehrlich. A mathematical model of collagen lattice contraction. J. R. Soc. Interface 11(99), 2014. doi:10.1098/rsif.2014.0598.

  11. Diridollou, S., F. Patat, F. Gens, L. Vaillant, D. Black, J. M. Lagarde, Y. Gall, and M. Berson. In vivo model of the mechanical properties of the human skin under suction. Skin Res. Technol. 6(4):214–221, 2000.

  12. Dunn M. G., and F. H. Silver. Viscoelastic behavior of human connective tissues—relative contribution of viscous and elastic components. Connect. Tissue Res. 12(1):59–70, 1983.

  13. Escoffier, C., J. Derigal, A. Rochefort, R. Vasselet, J. L. Leveque, and P. G. Agache. Age-related mechanical-properties of human-skin—an in vivo study. J. Investig. Dermatol. 93(3):353–357, 1989.

  14. Flegg, J. A., H. M. Byrne, and L. S. McElwain. Mathematical model of hyperbaric oxygen therapy applied to chronic diabetic wounds. Bull. Math. Biol. 72(7):1867–1891, 2010.

  15. Flegg, J. A., D. L. S. McElwain, H. M. Byrne, and I. W. Turner. A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. Plos Comput. Biol. 5(7):e1000451, 2009.

  16. Flynn, C., A. Taberner, and P. Nielsen. Measurement of the force-displacement response of in vivo human skin under a rich set of deformations. Med. Eng. Phys. 33(5):610–619, 2011.

  17. Flynn, C., A. Taberner, and P. Nielsen. Modeling the mechanical response of in vivo human skin under a rich set of deformations. Ann. Biomed. Eng. 39(7):1935–1946, 2011.

  18. Folkman J., and A. Moscona. Role of cell-shape in growth-control. Nature 273 (5661):345–349, 1978.

  19. Gahagnon, S., Y. Mofid, G. Josse, and F. Ossant. Skin anisotropy in vivo and initial natural stress effect: a quantitative study using high-frequency static elastography. J. Biomech. 45(16):2860–2865, 2012.

  20. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6):15–35, 2006.

  21. Gray, H., P. L. Williams, and L. H. Bannister. Gray’s anatomy: the anatomical basis of medicine and surgery. Philadelphia, PA: Gray’s Anatomy, Churchill Livingstone, 1995. ISBN 9780443045608.

  22. Grinnell, F. Fibroblast–collagen–matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 10(9):362–365, 2000.

  23. Groves, R. B., S. A. Coulman, J. C. Birchall, and S. L. Evans. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18:167–180, 2013.

  24. Guiotto, A., Z. Sawacha, G. Guarneri, A. Avogaro, and C. Cobelli. 3d finite element model of the diabetic neuropathic foot: a gait analysis driven approach. J. Biomech. 47(12):3064–3071, 2014.

  25. Gurtner, G. C., S. Werner, Y. Barrandon, and M. T. Longaker. Wound repair and regeneration. Nature 453(7193):314–321, 2008.

  26. Hall, C. L. Modelling of some biological materials using continuum mechanics. PhD Thesis, Queensland University of Technology, 2008.

  27. Hall-Findlay, E. J. A simplified vertical reduction mammaplasty: shortening the learning curve. Plastic Reconstruct. Surg. 104(3):748–759, 1999.

  28. Hendriks, F. M., D. Brokken, J. T. W. M. van Eemeren, C. W. J. Oomens, F. P. T. Baaijens, and J. B. A. M. Horsten. A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res. Technol. 9(3):274–283, 2003.

  29. Hinz B., and G. Gabbiani. Mechanisms of force generation and transmission by myofibroblasts. Curr. Opin. Biotechnol. 14(5):538–546, 2003.

  30. Hinz, B., D. Mastrangelo, C. E. Iselin, C. Chaponnier, and G. Gabbiani. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am. J. Pathol. 159(3):1009–1020, 2001

  31. Javierre, E., F. J. Vermolen, C. Vuik, and S. van der Zwaag. Numerical modelling of epidermal wound healing. Berlin: Springer, 2008. ISBN 978-3-540-69776-3.

  32. Javierre, E., P. Moreo, M. Doblare, and J. M. Garcia-Aznar. Numerical modeling of a mechano-chemical theory for wound contraction analysis. Int. J. Solids Struct. 46(20):3597–3606, 2009.

  33. Kerr, J. B. Functional Histology. Sydney: Elsevier Mosby Australia, 2010. ISBN 9780729538374.

  34. Kottner, J., A. Gefen, and N. Lahmann. Weight and pressure ulcer occurrence: a secondary data analysis. Int. J. Nursing Stud. 48(11):1339–1348, 2011.

  35. Langer, K. Zur Anatomie und Physiologie der Haut 1 über der Spaltbarkeit der Cutis. Sitzungsbericht der Akademie der Wissenschaften in Wien 44:19, 1861.

  36. Lapeer, R. J., P. D. Gasson, and V. Karri. A hyperelastic finite-element model of human skin for interactive real-time surgical simulation. IEEE Trans. Biomed. Eng. 58(4):1013–1022, 2011.

  37. Lott-Crumpler, D. A., and H. R. Chaudhry. Optimal patterns for suturing wounds of complex shapes to foster healing. J. Biomech. 34(1):51–58, 2001.

  38. Maggelakis, S. A. A mathematical model of tissue replacement during epidermal wound healing. Appl. Math. Model. 27(3):189–196, 2003.

  39. Manoussaki, D. A mechanochemical model of angiogenesis and vasculogenesis. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique 37(4):581–599, 2003.

  40. McGrath, M. H., and R. H. Simon. Wound geometry and the kinetics of wound contraction. Plastic Reconstruct. Surg. 72(1):66–72, 1983.

  41. Mitrossilis, D., J. Fouchard, A. Guiroy, N. Desprat, N. Rodriguez, B. Fabry, and A. Asnacios. Single-cell response to stiffness exhibits muscle-like behavior. Proc. Natl. Acad. Sci. USA 106(43):18243–18248, 2009.

  42. Moreo, M., J. M. Garcia-Aznar, and M. Doblare. Modeling mechanosensing and its effect on the migration and proliferation of adherent cells rid f-8256-2010. Acta Biomater. 4(3):613–621, 2008.

  43. Motegi, K., Y. Azumi, and T. Ueno. Postoperative scars and cleavage lines. Bull. Tokyo Med. Dental Univ. 24(2):163–168, 1977.

  44. Murphy, K. E., C. L. Hall, S. W. McCue, and D. L. S. McElwain. A two-compartment mechanochemical model of the roles of transforming growth factor β and tissue tension in dermal wound healing. J. Theor. Biol. 272(1):145–159, 2011.

  45. Murphy, K. E., C. L. Hall, P. K. Maini, S. W. McCue, and D. L. S. McElwain. A fibrocontractive mechanochemical model of dermal wound closure incorporating realistic growth factor kinetics. Bull. Math. Biol. 74(5):1143–1170, 2012.

  46. Murray, J. D., J. Cook, R. Tyson, and S. R. Lubkin. Spatial pattern formation in biology: I. Dermal wound healing. II. Bacterial patterns. J. Frankl. Inst. Eng. Appl. Math. 335B(2):303–332, 1998.

  47. Ogawa, R. Mechanobiology of scarring. Wound Repair Regen. 19:S2–S9, 2011.

  48. Olsen, L., J. A. Sherratt, and P. K. Maini. A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. J. Theor. Biol. 177(2):113–128, 1995.

  49. Olsen, L., J. A. Sherratt, and P. K. Maini. A mathematical model for fibro-proliferative wound healing disorders. Bull. Math. Biol. 58(4):787–808, 1996.

  50. Petrov, V. V., P. J. Lijnen, and R. H. Fagard. Stimulation of collagen production by TGF-β1 during differentiation of cardiac fibroblasts to myofibroblasts. J. Hyper. 20:S29–S29, 2002.

  51. Pollock, H., and T. Pollock. Progressive tension sutures: a technique to reduce local complications in abdominoplasty. Plastic Reconstruct. Surg. 105(7):2583–2586, 2000.

  52. Reina-Romo, E., M. J. Gomez-Benito, J. M. Garcia-Aznar, J. Dominguez, and M. Doblare. An interspecies computational study on limb lengthening. Proc. Inst. Mech. Eng. Part H 224(H11):1245–1256, 2010.

  53. Rey, R., and J. M. García-Aznar. A phenomenological approach to modelling collective cell movement in 2d. Biomech. Model. Mechanobiol. 12(6):1089–1100, 2013. ISSN 1617–7959. doi:10.1007/s10237-012-0465-9.

  54. Risau, W. Mechanisms of angiogenesis. Nature 386(6626):671–674, 1997.

  55. Roy, S., S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen. Characterization of a preclinical model of chronic ischemic wound. Physiol. Genom. 37(3):211–224, 2009.

  56. Schugart, R. C., A. Friedman, R. Zhao, and C. K. Sen. Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc. Natl. Acad. Sci. USA 105(7):2628–2633, 2008.

  57. Sen, C. K., G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17(6):763–771, 2009.

  58. Shah, M., D. M. Foreman, and M. W. J. Ferguson. Control of scarring in adult wounds by neutralizing antibody to transforming growth factor beta. Lancet 339(8787):213–214, 1992.

  59. Sherratt, J. A. and J. D. Murray. Models of epidermal wound-healing. Proc. R. Soc. B 241(1300):29–36, 1990.

  60. Silver, F. H., J. W. Freeman, and D. DeVore. Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. 7(1):18–23, 2001.

  61. Singer, A. J., and R. A. F. Clark. Mechanisms of disease—cutaneous wound healing. N. Engl. J. Med. 341(10):738–746, 1999.

  62. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3(5):349–363, 2002.

  63. Tranquillo, R. T., and J. D. Murray. Continuum model of fibroblast-driven wound contraction—inflammation-mediation. J. Theor. Biol. 158(2):135, 1992.

  64. Valero, C., E. Javierre, J. M. Garcia-Aznar, and M. J. Gomez-Benito. Numerical modelling of the angiogenesis process in wound contraction. Biomech. Model. Mechanobiol. 12(2):349–360, 2013.

  65. Valero, C., E. Javierre, J. M. Garcia-Aznar, and M. J. Gomez-Benito. Nonlinear finite element simulations of injuries with free boundaries: application to surgical wounds. Int. J. Numer. Methods Biomed. Eng. 30(6):616–633, 2014.

  66. Valero, C., E. Javierre, J. M. Garcia-Aznar, and M. J. Gomez-Benito. A cell-regulatory mechanism involving feedback between contraction and tissue formation guides wound healing progression. Plos One 9(3):e92774, 2014.

  67. Valero, C., E. Javierre, J. M. Garcia-Aznar, M. J. Gomez-Benito, and A. Menzel. Modelling the effect of collagen fibers in wound contraction. 7th World Congress of Biomechanics, Boston, 2014.

  68. Vaughan, M. B., E. W. Howard, and J. J. Tomasek. Transforming growth factor-beta 1 promotes the morphological and functional differentiation of the myofibroblast. Exp. Cell Res. 257(1):180–189, 2000.

  69. Vermolen, F. J., and E. Javierre. Computer simulations from a finite-element model for wound contraction and closure. J. Tissue Viabil. 19(2):43–53, 2010.

  70. Vermolen, F. J., and E. Javierre. A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure. J. Math. Biol. 65(5):967–996, 2012.

  71. Vermolen, F. J., and A. Gefen. A semi-stochastic cell-based model for in vitro infected wound healing through motility reduction: a simulation study. J. Theor. Biol. 318(0):68–80, 2013.

  72. Vermolen, F. J., and A. Gefen. A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell-cell contacts. Biomech. Model. Mechanobiol. 12(2):301–323, 2013. ISSN 1617–7959. doi:10.1007/s10237-012-0400-0.

  73. Weiss, J. A., B. N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1–2):107–128, 1996.

  74. Wilkes, G., I. Brown, and R. Wildnauer. The biomechanical properties of skin. Crit. Rev. Bioeng. 1:453–495, 1973.

  75. Xue, C., A. Friedman, and C. K. Sen. A mathematical model of ischemic cutaneous wounds. Proc. Natl. Acad. Sci. USA 106(39):16782–16787, 2009.

Download references

Acknowledgments

This research was supported by the Spanish Ministry of Economy and Competitiviness (GrantDPI2012-32880) (http://www.mineco.gob.es/portal/site/mineco/?lang-choosen=en). Financial support of the European Research council (ERC) through Project ERC-2012-StG306751 is gratefully acknowledged (http://erc.europa.eu/).

Conflict of interest

Neither author has a financial or proprietary interest in any material or method mentioned. All authors have read and approved the final manuscript. The authors have no conflicts of interest to its disclosure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Valero.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valero, C., Javierre, E., García-Aznar, J.M. et al. Challenges in the Modeling of Wound Healing Mechanisms in Soft Biological Tissues. Ann Biomed Eng 43, 1654–1665 (2015). https://doi.org/10.1007/s10439-014-1200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1200-8

Keywords

Navigation