Skip to main content
Log in

A Robust 3D Finite Element Simulation of Human Proximal Femur Progressive Fracture Under Stance Load with Experimental Validation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Clinical implementation of quantitative computed tomography-based finite element analysis (QCT/FEA) of proximal femur (hip) fractures requires (i) to develop a bone material behavior able to describe the progressive fracturing process until complete failure of the hip. And (ii) to validate the model with realistic test data that represent typical hip fractures. The objective of the current study was to develop and experimentally validate an accurate 3D finite element (FE) model coupled to a quasi-brittle damage law to simulate human proximal femur fracture considering the initiation and progressive propagation of multiple cracks phases under quasi-static load. The model is based on continuum damage mechanics that can predict hip fracture in more adequate physical terms than criteria-based fracture models. In order to validate the model, ten human proximal femurs were tested until complete fracture under one-legged stance quasi-static load. QCT/FE models were generated and FE simulations were performed on these femurs with the same applied loads and boundary conditions than in the stance experiments. The proposed FE model leads to excellent agreement (R 2 = 0.9432) between predicted and measured results concerning the shape of the force–displacement curve (yielding and fracturing) and the profile of the fractured edge. The motivation of this work was to propose a FE model for possible clinical use with a good compromise between complexity and capability of the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abaqus 6.11 Documentation, Analysis User’s Manual.

  2. Abdel-Wahab, A. A., and V. V. Silberschmidt. Numerical modeling of impact fracture of cortical bone tissue using X-FEM. J. Theor. Appl. Mech. 49(3):599–619, 2011.

    Google Scholar 

  3. Arthur Moore, T. L., and L. J. Gibson. Microdamage accumulation in bovine trabecular bone in uniaxial compression. J. Biomech. Eng. 124(1):63–71, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. Baca, V., Z. Horak, P. Mikulenka, and V. Dzupa. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Med. Eng. Phys. 30:924–930, 2008.

    Article  PubMed  Google Scholar 

  5. Bayraktar, H. H., E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37:27–35, 2004.

    Article  PubMed  Google Scholar 

  6. Bessho, M., I. Ohnishi, J. Matsuyama, T. Matsumoto, K. Imai, and K. Nakamura. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40:1745–1753, 2007.

    Article  PubMed  Google Scholar 

  7. Budyn, E., and T. Hoc. Analysis of micro fracture in human Haversian cortical bone under transverse tension using extended physical imaging. Int. J. Numer. Methods Eng. 82:940–965, 2010.

    Article  Google Scholar 

  8. Burr, D. B., and T. Stafford. Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin. Orthop. Relat. Res. 260:305–308, 1990.

    PubMed  Google Scholar 

  9. Chaboche, J. L. Continuum damage mechanics: a tool to describe phenomena before crack initiation. Nucl. Eng. Des. 64:233–247, 1981.

    Article  Google Scholar 

  10. Cotton, D. W., C. L. Whitehead, S. Vyas, C. Cooper, and E. A. Patterson. Are hip fractures caused by falling and breaking or breaking and falling? Photoelastic stress analysis. Forensic Sci. Int. 65:105–112, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Cristofolini, L., M. Juszczyk, S. Martelli, F. Taddei, and M. Viceconti. In vitro replication of spontaneous fractures of the proximal human femur. J. Biomech. 40:2837–2845, 2007.

    Article  PubMed  Google Scholar 

  12. Cristofolini, L., E. Schileo, M. Juszczyk, F. Taddei, S. Martelli, and M. Viceconti. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments. Philos. Trans. Math. Phys. Eng. Sci. 368(1920):2725–2763, 2010.

    Article  Google Scholar 

  13. Cumming, R. G., and R. J. Klineberg. Fall frequency and characteristics and the risk of hip fracture. J. Am. Geriatr. Soc. 42(7):774–778, 1994.

    PubMed  CAS  Google Scholar 

  14. Currey, J. D. Bones: Structure and Mechanics. Princeton: Princeton University Press, 2002.

    Google Scholar 

  15. Dall’Ara, E., B. Luisier, R. Schmidt, F. Kainberger, P. Zysset, and D. Pahr. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 1:27–38, 2013.

    Article  Google Scholar 

  16. Di Paola, M., F. Paolo Pinnola, and M. Zingales. A discrete mechanical model of fractional hereditary materials. Meccanica (on line), 2013.

  17. Di Paola, M., and M. Zingales. Exact mechanical models of fractional hereditary materials. J. Rheol. 56:983, 2012.

    Article  Google Scholar 

  18. Dragomir-Daescu, D., J. Op Den Buijs, S. McEeligot, Y. Dai, R. C. Entwistle, C. Salas, J. Melton, III, E. Bennet, S. Khosla, and S. Amin. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 39(2):742–755, 2011.

    Article  PubMed  Google Scholar 

  19. Fritsch, A., C. Hellmich, and L. Dormieux. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J. Theor. Biol. 260(2):230–252, 2009.

    Article  PubMed  CAS  Google Scholar 

  20. Gassara, F., R. Hambli, T. Bouraoui, F. El Halouani, and D. Soulat. Optimization of springback in L-bending process using a coupled Abaqus/Python algorithm. Int. J. Adv. Manuf. Technol. 44(1/2):61–67, 2009.

    Article  Google Scholar 

  21. Hambli, R. Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. Int. J. Numer. Methods Biomed. Eng. 27(4):461–475, 2011.

    Article  Google Scholar 

  22. Hambli, R. Apparent damage accumulation in cancellous bone using neural networks. J. Mech. Behav. Biomed. Mater. 4(6):868–878, 2011.

    Article  PubMed  Google Scholar 

  23. Hambli, R. A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Med. Biol. Eng. Comput. (Online), 2013.

  24. Hambli, R., and A. Barkaoui. Physically based 3D finite element model of a single mineralized collagen microfibril. J. Theor. Biol. 301:28–41, 2012.

    Article  PubMed  CAS  Google Scholar 

  25. Hambli, R., A. Bettamer, and S. Allaoui. Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Med. Eng. Phys. 34(2):202–210, 2012.

    Article  PubMed  Google Scholar 

  26. Hayes, W. C., E. R. Myers, J. N. Morris, T. N. Gerhart, H. S. Yett, and L. A. Lipsitz. Impact near the hip dominates fracture risk in elderly nursing home residents who fall. Calcif. Tissue Int. 52(3):192–198, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Hellmich, Ch., A. Dejaco, and St. Scheiner. Multiscale mechanics and mechanobiology for bone and bone tissue engineering. J. Tissue Eng. Regen. Med. 6(S1):389, 2012.

    Google Scholar 

  28. Juszczyk, M. M., L. Cristofolini, and M. Viceconti. The human proximal femur behaves linearly elastic up to failure under physiological loading conditions. J. Biomech. 44(12):2259–2266, 2011.

    Article  PubMed  Google Scholar 

  29. Kaneko, T. S., M. R. Pejcic, J. Tehranzadeh, and J. H. Keyak. Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions. Med. Eng. Phys. 25(6):445–454, 2003.

    Article  PubMed  Google Scholar 

  30. Keaveny, T. M., E. F. Wachtel, and D. L. Kopperdahl. Mechanical behavior of human trabecular bone after overloading. J. Orthop. Res. 17:346–353, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. Keyak, J. H. Relationships between femoral fracture loads for two load configurations”. J. Biomech. 33(4):499–502, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Keyak, J. H. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med. Eng. Phys. 23:165–173, 2001.

    Article  PubMed  CAS  Google Scholar 

  33. Keyak, J. H., and Y. Falkinstein. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med. Eng. Phys. 25:781–787, 2003.

    Article  PubMed  Google Scholar 

  34. Keyak, J., J. Meagher, H. Skinner, and J. Mote. Automated three-dimensional finite element modelling of bone: a new method. ASME J. Biomech. Eng. 12:389–397, 1990.

    CAS  Google Scholar 

  35. Keyak, J. H., S. A. Rossi, K. A. Jones, C. M. Les, and H. B. Skinner. Prediction of fracture location in the proximal femur using finite element models. Med. Eng. Phys. 23:657–664, 2001.

    Article  PubMed  CAS  Google Scholar 

  36. Keyak, J. H., S. A. Rossi, K. A. Jones, and H. B. Skinner. Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31:125–133, 1998.

    Article  PubMed  CAS  Google Scholar 

  37. Keyak, J. H., and H. B. Skinner. Three-dimensional finite element modelling of bone: effects of element size. J. Biomed. Eng. 14:483–489, 1992.

    Article  PubMed  CAS  Google Scholar 

  38. Koivumäki, J. E., J. Thevenot, P. Pulkkinen, V. Kuhn, T. M. Link, F. Eckstein, and T. Jämsä. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50(4):824–829, 2012.

    Article  PubMed  Google Scholar 

  39. Kotha, S. P., and N. Guzelsu. Tensile damage and its effects on cortical bone. J. Biomech. 36(11):1683–1689, 2003.

    Article  PubMed  CAS  Google Scholar 

  40. Lakes, R. S. Materials with structural hierarchy. Nature 361:511–515, 1993.

    Article  Google Scholar 

  41. Lemaitre, J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107:83–89, 1985.

    Article  Google Scholar 

  42. Link, M., V. Vieth, R. Langenberg, N. Meier, A. Lotter, D. Newitt, and S. Majumdar. Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calc. Tissue Int. 72:156–165, 2003.

    Article  CAS  Google Scholar 

  43. Lotz, J. C., E. J. Cheal, and W. C. Hayes. Fracture prediction for the proximal femur using finite element models. Part I. Linear analysis. J. Biomech. Eng. 113:353–360, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Malik, L., M. Stover, B. Martin, and C. Gibeling. Equine cortical bone exhibits rising R-curve fracture mechanics. J. Biomech. 36:191–198, 2003.

    Article  PubMed  CAS  Google Scholar 

  45. Martelli, S., F. Taddei, E. Varini, L. Cristofolini, L. Gill, and M. Viceconti. Accuracy of subject specific finite-element models of long bones from CT data: an in vitro study. Proc. ICCB II 1:251–265, 2005.

    Google Scholar 

  46. Martin, R. B., and D. B. Burr. Structure, Function, and Adaptation of Compact Bone. New York: Raven, 1989.

    Google Scholar 

  47. Mayhew, P. M., C. D. Thomas, J. G. Clement, N. Loveridge, T. J. Beck, W. Bonfield, C. J. Burgoyne, and J. Reeve. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135, 2005.

    Article  PubMed  Google Scholar 

  48. Mazars, J., and G. Pijaudier-Cabot. From Damage to fracture mechanics and conversely: a combined approach. Int. J. Solid Struct. 33:3327–3342, 1996.

    Article  Google Scholar 

  49. Murakami, S., and Y. Liu. Mesh-dependence in local approach to creep fracture. Int. J. Damage Mech 4:230–250, 1995.

    Article  Google Scholar 

  50. Nagaraja, S., T. L. Couse, and R. E. Guldberg. Trabecular bone microdamage and microstructural stresses under uniaxial compression. J. Biomech. 38:707–716, 2005.

    Article  PubMed  Google Scholar 

  51. Ota, T., I. Yamamoto, and R. Morita. Fracture simulation of femoral bone using finite-element method: how a fracture initiates and proceeds. J. Bone Miner. Metab. 17(2):108–112, 1999.

    Article  PubMed  CAS  Google Scholar 

  52. Pattin, C. A., W. E. Caler, and D. R. Carter. Cyclic mechanical property degradation during fatigue loading of cortical bone. J. Biomech. 29:69–79, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. Peng, L., J. Bai, X. Zeng, and Y. Zhou. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med. Eng. Phys. 28:227–233, 2006.

    Article  PubMed  Google Scholar 

  54. Ray, N. F., J. K. Chan, M. Thamer, and L. J. Melton. Medical Expenditures for Treatment of Osteoporosis Fractures in the United States in 1995: report From the National Osteoporosis Foundation. J. Bone Miner. Res. 12:24–25, 1997.

    Article  PubMed  CAS  Google Scholar 

  55. Reilly, D. T., and A. H. Burstein. The elastic and ultimate properties of compact bone tissue. J. Biomech. 8:393–405, 1975.

    Article  PubMed  CAS  Google Scholar 

  56. San Antonio, T., M. Ciaccia, C. Müller-Karger, and E. Casanova. Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. Med. Eng. Phys. 34(7):914–919, 2012.

    Article  PubMed  CAS  Google Scholar 

  57. Schileo, E., F. Taddei, L. Cristofolini, and M. Viceconti. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 41(2):356–367, 2008.

    Article  PubMed  Google Scholar 

  58. Schileo, E., F. Taddei, A. Malandrino, L. Cristofolini, and M. Viceconti. Subject-specific finite element models can accurately predict strain levels in long bones. J. Biomech. 40:2982–2989, 2007.

    Article  PubMed  Google Scholar 

  59. Smith, M. D., D. D. Cody, A. M. Cooperman, S. A. Goldstein, L. S. Matthews, and M. J. Flynn. Proximal femur bone density and its correlation to fracture load and hip screw penetration load. Clin. Orthop. Relat. Res. 283:244–251, 1992.

    PubMed  Google Scholar 

  60. Sobelman, O. S., J. C. Gibeling, S. M. Stover, S. J. Hazelwood, O. C. Yeh, D. R. Shelton, and R. B. Martin. Do microcracks decrease or increase fatigue resistance in cortical bone? J. Biomech. 37(9):1295–1303, 2004.

    Article  PubMed  CAS  Google Scholar 

  61. Taylor, D., and T. C. Lee. A crack growth model for the simulation of fatigue in bone. Int. J. Fatigue 2:387–395, 2003.

    Article  Google Scholar 

  62. Tellache, M., M. Pithioux, P. Chabrand, and C. Hochard. Femoral neck fracture prediction by anisotropic yield criteria. Eur. J. Comput. Mech. 18(1):33–41, 2009.

    Google Scholar 

  63. Trabelsi, N., Z. Yosibash, and C. Milgrom. Validation of subject-specific automated p-FE analysis of the proximal femur. J. Biomech. 42:234–241, 2009.

    Article  PubMed  Google Scholar 

  64. Turner, C. H. Bone strength: current concepts. Ann. N. Y. Acad. Sci. 1068:429–446, 2006.

    Article  PubMed  Google Scholar 

  65. Ural, A., and D. Vashishth. Anisotropy of age-related toughness loss in human cortical bone: a finite element study. J. Biomech. 40:1606–1614, 2007.

    Article  PubMed  Google Scholar 

  66. Vashishth, D., E. Tanner, and W. Bonfield. Experimental validation of a microcracking-based toughening mechanism for cortical bone. J. Biomech. 36(1):121–124, 2003.

    Article  PubMed  CAS  Google Scholar 

  67. Verhulp, E., B. van Rietbergen, and R. Huiskes. Comparison of micro-level and continuum level voxel models of the proximal femur. J. Biomech. 39:2951–2957, 2006.

    Article  PubMed  CAS  Google Scholar 

  68. Viceconti, M., F. Taddei, L. Cristofolini, S. Martelli, C. Falcinelli, and E. Schileo. Are spontaneous fractures possible? An example of clinical application for personalised, multiscale neuro-musculo-skeletal modelling. J. Biomech. 45:421–426, 2012.

    Article  PubMed  Google Scholar 

  69. Yang, H., L. Shen, K. Demetropoulos, I. King, P. Kolodziej, S. Levine, and J. Fitzgerald. The relationship between loading conditions and fracture patterns of the proximal femur. J. Biomech. Eng. 118:575–578, 1996.

    Article  PubMed  CAS  Google Scholar 

  70. Yosibash, Z., D. Tal, and N. Trabelsi. Inhomogeneous orthotropic material properties high-order finite-element analysis with inhomogeneous orthotropic material properties. Philos. Trans. R. Soc. A 368:2707–2723, 2010.

    Article  Google Scholar 

  71. Zimmermann, E. A., H. D. Barth, and R. O. Ritchie. The multiscale origins of fracture resistance in human bone and its biological degradation. JOM 64(4):486–493, 2012.

    Article  CAS  Google Scholar 

  72. Zuckerman, J. D. Hip fracture. N. Engl. J. Med. 334:1519–1525, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency (ANR) through the TecSan program (Project MoDos, No. ANR-09-TECS-018) and part of the Fractos project supported by the Region Centre (France). The authors gratefully acknowledge Prof. Jennane for the fruitful discussions about the FE results, Mr Bettamer for the help in designing of the experimental set-up and in performing the experiments, Prof. Lespessailes and Prof. Benhamou for the help with sample collection and preparation, Prof. Laredo for the help during the scanning.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Hambli.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hambli, R., Allaoui, S. A Robust 3D Finite Element Simulation of Human Proximal Femur Progressive Fracture Under Stance Load with Experimental Validation. Ann Biomed Eng 41, 2515–2527 (2013). https://doi.org/10.1007/s10439-013-0864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0864-9

Keywords

Navigation