Skip to main content

Advertisement

Log in

Mechanical & Cell Culture Properties of Elastin-Like Polypeptide, Collagen, Bioglass, and Carbon Nanosphere Composites

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Collagen, the most commonly used extra-cellular matrix protein for tissue engineering applications, displays poor mechanical properties. Here, we report on the preparation and characterization of novel multi-component composite systems that incorporate a genetically engineered, biocompatible polymer (elastin-like polypeptide, ELP), biodegradable ceramic (45S5 bioglass), carbon nanosphere chains (CNSC), and minimal amount (~25% w/w) of collagen. We hypothesized that incorporation of bioglass and CNSC would improve mechanical properties of the composites. Our results showed that the tensile strength and elastic modulus nearly doubled after addition of the bioglass and CNSC compared to the control ELP–collagen hydrogels. Further, MC3T3-E1 pre-osteoblasts were cultured within the composite hydrogels and a thorough biochemical and morphological characterization was performed. Live/dead assay confirmed high cell viability (>95%) for all hydrogels by day 21 of culture. Alkaline phosphatase (ALP) activity and osteocalcin (OCN) production assessed the pre-osteoblast differentiation. Normalized ALP activity was highest for the cells cultured within ELP–bioglass–collagen hydrogels, while normalized OCN production was equivalent for all hydrogels. Alizarin red staining confirmed the mineral deposition by the cells within all hydrogels. Thus, the multi-component composite hydrogels displayed improved mechanical and cell culture properties and may be suitable scaffold materials for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Amruthwar, S. S., and A. V. Janorkar. Preparation and characterization of elastin-like polypeptide scaffolds for local delivery of antibiotics and proteins. J. Mater. Sci. Mater. Med. 23:2903–2912, 2012.

    Article  PubMed  CAS  Google Scholar 

  2. Amruthwar, S. S., and A. V. Janorkar. In vitro evaluation of elastin-like polypeptide–collagen composite scaffold for bone tissue engineering. Dent. Mater. 29:211–220, 2013.

    Article  PubMed  CAS  Google Scholar 

  3. Amruthwar, S. S., A. D. Puckett, and A. V. Janorkar. Preparation and characterization of novel elastin-like polypeptide–collagen composites. J. Biomed. Mater. Res. A 2013. DOI: 10.1002/jbm.a.34514; Epub ahead of print publication.

  4. An, S., J. Ling, Y. Gao, and Y. Xiao. Effects of varied ionic calcium and phosphate on the proliferation, osteogenic differentiation and mineralization of human periodontal ligament cells in vitro. J. Periodontal Res. 47:374–382, 2012.

    Article  PubMed  CAS  Google Scholar 

  5. Annabi, N., S. M. Mithieux, E. A. Boughton, A. J. Ruys, A. S. Weiss, and F. Dehghani. Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 30:4550–4557, 2009.

    Article  PubMed  CAS  Google Scholar 

  6. Arias, F. J., V. Reboto, S. Martin, I. Lopez, and J. C. Rodriguez-Cabello. Tailored recombinant elastin-like polymers for advanced biomedical and nano(bio)technological applications. Biotechnol. Lett. 28:687–695, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Bottinoa, M. C., V. Thomas, G. Schmidt, Y. K. Vohra, T. M. G. Chu, M. J. Kowolik, and G. M. Janowski. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent. Mater. 28:703–721, 2012.

    Article  Google Scholar 

  8. Caves, J. M., W. Cui, J. Wen, V. A. Kumar, C. A. Haller, and E. L. Chaikof. Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair. Biomaterials 32:5371–5379, 2011.

    Article  PubMed  CAS  Google Scholar 

  9. Caves, J. M., V. A. Kumar, A. W. Martinez, J. Kim, C. M. Ripberger, C. A. Haller, and E. L. Chaikof. The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials 31:7175–7182, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Chesnutt, B. M., A. M. Viano, Y. Yuan, Y. Yang, T. Guda, M. R. Appleford, J. L. Ong, W. O. Haggard, and J. D. Bumgardner. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J. Biomed. Mater. Res. 88A:491–502, 2009.

    Article  CAS  Google Scholar 

  11. Coleman, J. N., U. Khan, and Y. K. Gunko. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18:689–706, 2006.

    Article  CAS  Google Scholar 

  12. Fujihara, K., M. Kotaki, and S. Ramakrishna. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26:4139–4147, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Gao, C., Q. Gao, Y. Li, M. N. Rahaman, A. Teramoto, and K. Abe. Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration. J. Biomed. Mater. Res. 100A:1324–1334, 2012.

    Article  CAS  Google Scholar 

  14. Garcia, Y., N. Hemantkumar, R. Collighan, M. Griffin, J. C. Rodriguez-Cabello, and A. Pandit. In vitro characterization of a collagen scaffold enzymatically cross-linked with a tailored elastin-like polymer. Tissue Eng. 15:887–899, 2009.

    Article  CAS  Google Scholar 

  15. Glowacki, J., and S. Mizuno. Collagen scaffolds for tissue engineering. Biopolymers 89:338–344, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Gough, J. E., I. Notingher, and L. L. Hench. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J. Biomed. Mater. Res. 68A:640–650, 2004.

    Article  CAS  Google Scholar 

  17. Guo, X., C. Jagannath, M. G. Espitia, and X. Zhou. Uptake of silica and carbon nanotubes by human macrophages/monocytes induces activation of fibroblasts in vitro—potential implication for pathogenesis of inflammation and fibrotic diseases. Int. J. Immunopathol. Pharmacol. 25:713–719, 2012.

    PubMed  CAS  Google Scholar 

  18. Harriger, M. D., A. P. Supp, G. D. Warden, and S. T. Boyce. Glutaraldehyde crosslinking of collagen substrates inhibits degradation in skin substitutes grafted to athymic mice. J. Biomed. Mater. Res. 35:137–145, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. Hattar, S., A. Berdal, A. Asselin, S. Loty, D. C. Greenspan, and J. M. Sautier. Behavior of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses. Eur. Cell Mater. 4:61–69, 2002.

    PubMed  CAS  Google Scholar 

  20. Hu, Y. C., and J. P. Zhong. Osteostimulation of bioglass. Chin. Med. J. 122:2386–2389, 2009.

    PubMed  Google Scholar 

  21. Huang, J., H. He, L. Sheng, and G. Gu. Comparison of calcium alginate film with collagen membrane for guided bone regeneration in mandibular defects in rabbits. J. Oral Maxillofac. Surg. 60:1449–1454, 2002.

    Article  Google Scholar 

  22. Huang, L., K. Nagapudi, R. P. Apkarian, and E. L. Chaikof. Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci. Polym. Ed. 12:979–993, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Jones, J. R. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9:4457–4486, 2013.

    Article  PubMed  CAS  Google Scholar 

  24. Khatiwala, C. B., S. R. Peyton, and A. J. Putnam. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 290:C1640–C1650, 2006.

    Article  PubMed  CAS  Google Scholar 

  25. Kikuchi, M., Y. Koyama, K. Takakuda, H. Miyaairi, N. Shirahama, and J. Tanaka. In vitro change in mechanical strength of β-tricalcium phosphate/copolymerized poly l-lactide composites and their application for guided bone regeneration. J. Biomed. Mater. Res. 62:265–272, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Kinikoglu, B., J. C. Rodriguez-Cabello, O. Damour, and V. Hasirci. A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering. J. Mater. Sci. Mater. Med. 22:1541–1554, 2011.

    Article  PubMed  CAS  Google Scholar 

  27. Kyle, S., A. Aggeli, E. Ingham, and M. J. McPherson. Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol. 27:423–433, 2009.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, Y., J. H. Kim, D. Young, S. Kim, S. K. Nishimoto, and Y. Yang. Novel template-casting technique for fabricating β-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J. Biomed. Mater. Res. 92A:997–1006, 2010.

    CAS  Google Scholar 

  29. Lu, Q., K. Ganesan, D. T. Simionescu, and N. R. Vyavahare. Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials 25:5227–5237, 2004.

    Article  PubMed  CAS  Google Scholar 

  30. MacDonald, R. A., B. F. Laurenzi, G. Viswanathan, P. M. Ajayan, and J. P. Stegemann. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J. Biomed. Mater. Res. 74A:489–496, 2005.

    Article  CAS  Google Scholar 

  31. MacEwan, S. R., and A. Chilkoti. Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94:60–77, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Maheshwari, G., N. Mallik, J. Abot, A. Song, E. Head, M. Dadhania, V. Shanov, C. Jayasinghe, P. Salunke, L. Lee, D. Hurd, Y. Yun, S. Yarmolenko, J. Sankar, P. Phillips, R. A. Komoroski, et al. Nanoscale materials for engineering and medicine. Proc. SPIE. 6931:6931061–69310615, 2008.

    Google Scholar 

  33. Manke A., L. Wang, and Y. Rojanasakul. Pulmonary toxicity and fibrogenic response of carbon nanotubes. Toxicol. Mech. Methods 2013; Epub ahead of print publication.

  34. Marelli, B., C. E. Ghezzi, D. Mohn, W. J. Stark, J. E. Barralet, A. R. Boccaccini, and S. N. Nazhat. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 32:8915–8926, 2011.

    Article  PubMed  CAS  Google Scholar 

  35. McAllister, B. S., and K. Haghighat. Bone augmentation techniques. J. Periodontol. 78:377–396, 2007.

    Article  PubMed  Google Scholar 

  36. Meyer, D. E., and A. Chilkoti. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat. Biotechnol. 17:1112–1115, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Mizuno, M., M. Shindo, D. Kobayashi, E. Tsuruga, A. Amemiya, and Y. Kuboki. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 20:101–107, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Mu, C., K. Zhang, W. Lin, and D. Li. Ring-opening polymerization of genipin and its long-range crosslinking effect on collagen hydrogel. J. Biomed. Mater. Res. 101A:385–393, 2013.

    Article  CAS  Google Scholar 

  39. Nagapudi, K., W. T. Brinkman, B. S. Thomas, J. O. Park, M. Srinivasarao, E. Wright, V. P. Conticello, and E. L. Chaikof. Viscoelastic and mechanical behavior of recombinant protein elastomers. Biomaterials 26:4695–4706, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Nakamae, K., T. Nishino, K. Kato, T. Miyata, and A. S. Hoffman. Synthesis and characterization of stimuli-sensitive hydrogels having a different length of ethylene glycol chains carrying phosphate groups: loading and release of lysozyme. J. Biomater. Sci. Polym. Ed. 15:1435–1446, 2004.

    Article  PubMed  Google Scholar 

  41. Norowski, P. A. Jr., T. Fujiwara, W. C. Clem, P. C. Adatrow, E. C. Eckstein, W. O. Haggard, and J. D. Bumgardner. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility. J. Tissue Eng. Regen. Med. 2012. DOI: 10.1002/term.1648; Epub ahead of print publication.

  42. Shanov, V. N., G. Choi, G. Maheshwari, G. Seth, S. Chopra, G. Li, Y. Yun, J. Abot, and M. J. Schulz. Structural nanoskin based on carbon nanosphere chains. Proc. SPIE. 6529:652927, 2007.

    Article  Google Scholar 

  43. Speer, D. P., M. Chvapil, C. D. Eskelson, and J. Ulreich. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J. Biomed. Mater. Res. 14:753–764, 1980.

    Article  PubMed  CAS  Google Scholar 

  44. Sun, J. Y., Y. S. Yang, J. Zhong, and D. C. Greenspan. The effect of the ionic products of bioglass dissolution on human osteoblasts growth cycle in vitro. J. Tissue Eng. Regen. Med. 1:281–286, 2007.

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi, K. Effect of new bone substitute materials consisting of collagen and tricalcium phosphate. Bull. Tokyo Dent. Coll. 50:1–11, 2009.

    Article  PubMed  CAS  Google Scholar 

  46. Tal, H., A. Kozlovsky, Z. Artzi, C. E. Nemcovsky, and O. Moses. Cross-linked and non-cross-linked collagen barrier membranes disintegrate following surgical exposure to the oral environment: a histological study in the cat. Clin. Oral Implants Res. 19:760–766, 2008.

    Article  PubMed  Google Scholar 

  47. Tatakis, D. N., A. Promsudthi, and U. M. Wikesjö. Devices for periodontal regeneration. Periodontol 2000(19):59–73, 1999.

    Article  Google Scholar 

  48. Tieliewuhan, Y., I. Hirata, A. Sasaki, H. Minagi, and M. Okazaki. Osteoblast proliferation behavior and bone formation on and in CO3 apatite-collagen sponges with a porous hydroxyapatite frame. Dent. Mater. J. 23:258–264, 2004.

    Article  PubMed  Google Scholar 

  49. Ueyama, Y., T. Koyama, K. Ishikawa, T. Mano, Y. Ogawa, H. Nagatsuka, and K. Suzuki. Comparison of ready-made and self-setting alginate membranes used as a barrier membrane for guided bone regeneration. J. Mater. Sci. Mater. Med. 17:281–288, 2006.

    Article  PubMed  CAS  Google Scholar 

  50. Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. 101:11007–11028, 1997.

    CAS  Google Scholar 

  51. Voge, C. M., J. Johns, M. Raghavan, M. D. Morris, and J. P. Stegemann. Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein-nanotube composite biomaterials. J. Biomed. Mater. Res. 101A:231–238, 2013.

    Article  CAS  Google Scholar 

  52. Voge, C. M., M. Kariolis, R. A. MacDonald, and J. P. Stegemann. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment. J. Biomed. Mater. Res. 86A:269–277, 2008.

    Article  CAS  Google Scholar 

  53. Wang, L., and J. P. Stegemann. Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering. Biomaterials 31:3976–3985, 2010.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, L., and J. P. Stegemann. Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater. 7:2410–2417, 2011.

    Article  PubMed  CAS  Google Scholar 

  55. Weir, M. D., and H. H. K. Xu. Osteoblastic induction on calcium phosphate cement-chitosan constructs for bone tissue engineering. J. Biomed. Mater. Res. 94A:223–233, 2010.

    Article  CAS  Google Scholar 

  56. Xu, H. H. K., J. B. Quinn, S. Takagi, and L. C. Chow. Processing and properties of strong and nonrigid calcium phosphate cement. J. Dent. Res. 81:219–224, 2002.

    Article  PubMed  CAS  Google Scholar 

  57. Xu, H. H. K., S. Takagi, L. Sun, L. Hussain, L. C. Chow, W. F. Guthrie, and J. H. Yen. Development of a nonrigid, durable calcium phosphate cement for use in periodontal bone repair. J. Am. Dent. Assoc. 137:1131–1138, 2006.

    PubMed  CAS  Google Scholar 

  58. Xynos, I. D., A. J. Edgar, L. D. Buttery, L. L. Hench, and J. M. Polak. Gene-expression profiling of human osteoblasts following treatment with the ionic products of bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55:151–157, 2000.

    Article  Google Scholar 

  59. Xynos, I. D., M. V. Hukkanen, J. J. Batten, L. D. Buttery, L. L. Hench, and J. M. Polak. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67:321–329, 2000.

    Article  PubMed  CAS  Google Scholar 

  60. Yannas, I. V., and J. F. Burke. Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 14:65–81, 1980.

    Article  PubMed  CAS  Google Scholar 

  61. Yannas, I. V., E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl Acad. Sci. U.S.A. 86:933–937, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the School of Dentistry through the intramural research support program is gratefully acknowledged. Authors thank Clean Technology Nano, LLC, for the contribution of their CNSC (Grafex) material. Authors thank Mr. Todd Owens for construction of the custom acrylic mold, Dr. Aaron Puckett for his advice on mechanical testing, and Mr. C. Andrew Weeks for the help with DNA analysis (all from University of Mississippi Medical Center). This work made use of various instruments in the Department of Biomedical Materials Science User Facility. NDS participated in the Summer Undergraduate Research Experience (SURE) Program. TSW participated in the Undergraduate and Professional Student Training in Advanced Research Techniques (UPSTART) Program. Authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol V. Janorkar.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Tyler S. Wheeler and Nathanael D. Sbravati contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, T.S., Sbravati, N.D. & Janorkar, A.V. Mechanical & Cell Culture Properties of Elastin-Like Polypeptide, Collagen, Bioglass, and Carbon Nanosphere Composites. Ann Biomed Eng 41, 2042–2055 (2013). https://doi.org/10.1007/s10439-013-0825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0825-3

Keywords

Navigation