Skip to main content

Advertisement

Log in

Recent Progress in Interfacial Tissue Engineering Approaches for Osteochondral Defects

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This review provides a brief synopsis of the anatomy and physiology of the osteochondral interface, scaffold-based and non-scaffold based approaches for engineering both tissues independently as well as recent developments in the manufacture of gradient constructs. Novel manufacturing techniques and nanotechnology will be discussed with potential application in osteochondral interfacial tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Aaron, R. K., A. H. Skolnick, S. E. Reinert, and D. M. Ciombor. Arthroscopic debridement for osteoarthritis of the knee. J. Bone Joint Surg. Am. 88:936–943, 2006.

    Article  PubMed  Google Scholar 

  2. Aigner, T., and H. A. Kim. Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration. Arthritis Rheum. 46:1986–1996, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Andriamanalijaona, R., E. Duval, M. Raoudi, S. Lecourt, J. T. Vilquin, J. P. Marolleau, J. P. Pujol, P. Galera, and K. Boumediene. Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthritis Cartilage 16:1509–1518, 2008.

    Article  PubMed  CAS  Google Scholar 

  4. Arokoski, J. P. A., J. S. Jurvelin, U. Väätäinen, and H. J. Helminen. Normal and pathological adaptations of articular cartilage to joint loading. Scand. J. Med. Sci. Sports 10:186–198, 2000.

    Article  PubMed  CAS  Google Scholar 

  5. Beachley, V., and X. Wen. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C 29:663–668, 2009.

    Article  CAS  Google Scholar 

  6. Boland, T., T. Xu, B. Damon, and X. Cui. Application of inkjet printing to tissue engineering. Biotechnol. J. 1:910–917, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Boudriot, U., R. Dersch, A. Greiner, and J. H. Wendorff. Electrospinning approaches toward scaffold engineering—a brief overview. Artif. Organs 30:785–792, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Brehm, W., B. Aklin, T. Yamashita, F. Rieser, T. Trub, R. P. Jakob, and P. Mainil-Varlet. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis Cartilage 14:1214–1226, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Buckwalter, J. A., J. Martin, and H. J. Mankin. Synovial joint degeneration and the syndrome of osteoarthritis. Instr. Course Lect. 49:481–489, 2000.

    PubMed  CAS  Google Scholar 

  10. Castro, N., P. Goldstein, and M. N. Cooke. Synthesis and manufacture of photocrosslinkable poly(caprolactone)-based three-dimensional scaffolds for tissue engineering applications. Adv. Biosci. Biotechnol. 2:167–173, 2011.

    Article  CAS  Google Scholar 

  11. Castro, N., J. Umanzor-Alvarez, L. Zhang, and M. Keidar. Nanobiotechnology and nanostructured therapeutic delivery systems. Recent Pat. Biomed. Eng. 5:29–40, 2012.

    Article  CAS  Google Scholar 

  12. Chen, Y., B. Bilgen, R. A. Pareta, A. J. Myles, H. Fenniri, D. M. Ciombor, R. K. Aaron, and T. J. Webster. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering. Tissue Eng. Part C 16:1233–1243, 2010.

    Article  CAS  Google Scholar 

  13. Chen, J., H. Chen, P. Li, H. Diao, S. Zhu, L. Dong, R. Wang, T. Guo, J. Zhao, and J. Zhang. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32:4793–4805, 2011.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, D., X. Zhang, Y. He, J. Lu, H. Shen, Y. Jiang, C. Zhang, and B. Zeng. Co-culturing mesenchymal stem cells from bone marrow and periosteum enhances osteogenesis and neovascularization of tissue-engineered bone. J. Tissue Eng. Regen. Med., 2011.

  15. Cheuk, Y. C., M. W. N. Wong, K. M. Lee, and S. C. Fu. Use of allogeneic scaffold-free chondrocyte pellet in repair of osteochondral defect in a rabbit model. J. Orthop. Res. 29:1343–1350, 2011.

    Article  PubMed  CAS  Google Scholar 

  16. Chim, H., D. W. Hutmacher, A. M. Chou, A. L. Oliveira, R. L. Reis, T. C. Lim, and J. T. Schantz. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Int. J. Oral Maxillofac. Surg. 35:928–934, 2006.

    Article  PubMed  CAS  Google Scholar 

  17. Choi, Y. S., S. M. Lim, H. C. Shin, C. W. Lee, S. L. Kim, and D. I. Kim. Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen. Biotechnol. Lett. 29:323–329, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Choi, Y. S., S. E. Noh, S. M. Lim, C. W. Lee, C. S. Kim, M. W. Im, M. H. Lee, and D. I. Kim. Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol. Lett. 30:593–601, 2008.

    Article  PubMed  CAS  Google Scholar 

  19. Chuckpaiwong, B., E. M. Berkson, and G. H. Theodore. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy 24:106–112, 2008.

    Article  PubMed  Google Scholar 

  20. Cohen, D. L., J. I. Lipton, L. J. Bonassar, and H. Lipson. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2:035004, 2010.

    Article  PubMed  CAS  Google Scholar 

  21. Cooke, M. N., J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J. Biomed. Mater. Res. Part B 64B:65–69, 2003.

    Article  CAS  Google Scholar 

  22. de Mara, C. S., A. S. Duarte, A. R. Sartori-Cintra, A. C. Luzo, S. T. Saad, and I. B. Coimbra. Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6. Rheumatol. Int. 2012.

  23. Dormer, N., C. Berkland, and M. Detamore. Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces. Ann. Biomed. Eng. 38:2121–2141, 2010.

    Article  PubMed  Google Scholar 

  24. Dormer, N. H., M. Singh, L. Zhao, N. Mohan, C. J. Berkland, and M. S. Detamore. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. J. Biomed. Mater. Res. Part A 100:162–170, 2012.

    Article  CAS  Google Scholar 

  25. Duan, B., W. L. Cheung, and M. Wang. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 3:015001, 2011.

    Article  PubMed  CAS  Google Scholar 

  26. Elder, B. D., and K. A. Athanasiou. Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthritis Cartilage 17:114–123, 2009.

    Article  PubMed  CAS  Google Scholar 

  27. Erisken, C., D. M. Kalyon, and H. Wang. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065–4073, 2008.

    Article  PubMed  CAS  Google Scholar 

  28. Ethier, C. R., and C. A. Simmons. Introductory Biomechanics—From Cells to Organisms. Cambridge: Cambridge University Press, 2007, 459 pp.

  29. Eyre, D. Collagen of articular cartilage. Arthritis Res. 4:30–35, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Eyre, D. R., M. A. Weis, and J. J. Wu. Articular cartilage collagen: an irreplaceable framework? Eur. Cell. Mater. 12:57–63, 2006.

    PubMed  CAS  Google Scholar 

  31. Findlay, D. M. Vascular pathology and osteoarthritis. Rheumatology 46:1763–1768, 2007.

    Article  PubMed  CAS  Google Scholar 

  32. Fong, C. Y., A. Subramanian, K. Gauthaman, J. Venugopal, A. Biswas, S. Ramakrishna, and A. Bongso. Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev. 8:195–209, 2012.

    Article  PubMed  CAS  Google Scholar 

  33. Freeman, M. A. R. Adult Articular Cartilage. Tunbridge Wells: Pitman Medical, 590 pp, 1979.

  34. Furukawa, K. S., K. Imura, T. Tateishi, and T. Ushida. Scaffold-free cartilage by rotational culture for tissue engineering. J. Biotechnol. 133:134–145, 2008.

    Article  PubMed  CAS  Google Scholar 

  35. Gay, I. C., S. Chen, and M. MacDougall. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod. Craniofac. Res. 10:149–160, 2007.

    Article  PubMed  CAS  Google Scholar 

  36. Goldring, M. B., and S. R. Goldring. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N. Y. Acad. Sci. 1192:230–237, 2010.

    Article  PubMed  CAS  Google Scholar 

  37. Gravel, M., T. Gross, R. Vago, and M. Tabrizian. Responses of mesenchymal stem cell to chitosan–coralline composites microstructured using coralline as gas forming agent. Biomaterials 27:1899–1906, 2006.

    Article  PubMed  CAS  Google Scholar 

  38. Gravel, M., R. Vago, and M. Tabrizian. Use of natural coralline biomaterials as reinforcing and gas-forming agent for developing novel hybrid biomatrices: microarchitectural and mechanical studies. Tissue Eng. 12:589–600, 2006.

    Article  PubMed  CAS  Google Scholar 

  39. Guillotin, B., and F. Guillemot. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29:183–190, 2011.

    Article  PubMed  CAS  Google Scholar 

  40. Guo, X., H. Park, S. Young, J. D. Kretlow, J. J. van den Beucken, L. S. Baggett, Y. Tabata, F. K. Kasper, A. G. Mikos, and J. A. Jansen. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater. 6:39–47, 2010.

    Article  PubMed  CAS  Google Scholar 

  41. Hamid, A. A., R. B. Idrus, A. B. Saim, S. Sathappan, and K. H. Chua. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics 67:99–106, 2012.

    Article  PubMed  Google Scholar 

  42. Hootman, J. M., and C. G. Helmick. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum. 54:226–229, 2006.

    Article  PubMed  Google Scholar 

  43. Hu, J. Chondrocyte self-assembly and culture in bioreactors. In: Department of Bioengineering, Houston: Rice University, 2005. p. 276.

  44. Huber, M., S. Trattnig, and F. Lintner. Anatomy, biochemistry, and physiology of articular cartilage. Invest. Radiol. 35:573–580, 2000.

    Article  PubMed  CAS  Google Scholar 

  45. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543, 2000.

    Article  PubMed  CAS  Google Scholar 

  46. Hwang, N. S., S. G. Im, P. B. Wu, D. A. Bichara, X. Zhao, M. A. Randolph, R. Langer, and D. G. Anderson. Chondrogenic priming adipose-mesenchymal stem cells for cartilage tissue regeneration. Pharm. Res. 28:1395–1405, 2011.

    Article  PubMed  CAS  Google Scholar 

  47. Im, O., J. Li, M. Wang, L. Zhang, and M. Keidar. Biomimetic 3D nanocrystalline hydroxyapatite and magnetically synthesized SWCNT chitosan nanocomposite for bone regeneration. Int. J. Nanomed. 7:2087–2099, 2012.

    Google Scholar 

  48. Imhof, H., I. Sulzbacher, S. Grampp, C. Czerny, S. Youssefzadeh, and F. Kainberger. Subchondral bone and cartilage disease—a rediscovered functional unit. Invest. Radiol. 35:581–588, 2000.

    Article  PubMed  CAS  Google Scholar 

  49. Jiang, C. C., H. Chiang, C. J. Liao, Y. J. Lin, T. F. Kuo, C. S. Shieh, Y. Y. Huang, and R. S. Tuan. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J. Orthop. Res. 25:1277–1290, 2007.

    Article  PubMed  CAS  Google Scholar 

  50. Jin, C. Z., J. H. Cho, B. H. Choi, L. M. Wang, M. S. Kim, S. R. Park, J. H. Yun, H. J. Oh, and B. H. Min. The maturity of tissue-engineered cartilage in vitro affects the repairability for osteochondral defect. Tissue Eng. Part A 17:3057–3065, 2011.

    Article  PubMed  CAS  Google Scholar 

  51. Khanarian, N. T., J. Jiang, L. Q. Wan, V. C. Mow, and H. H. Lu. A hydrogel–mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng. Part A 18:533–545, 2011.

    Article  PubMed  CAS  Google Scholar 

  52. Kim, K., D. Dean, J. Wallace, R. Breithaupt, A. G. Mikos, and J. P. Fisher. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 32:3750–3763, 2011.

    Article  PubMed  CAS  Google Scholar 

  53. Kim, S. S., M. Sun Park, O. Jeon, C. Yong Choi, and B. S. Kim. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399–1409, 2006.

    Article  PubMed  CAS  Google Scholar 

  54. Knudson, C. B., and W. Knudson. Cartilage proteoglycans. Semin. Cell Dev. Biol. 12:69–78, 2001.

    Article  PubMed  CAS  Google Scholar 

  55. Kon, E., M. Delcogliano, G. Filardo, M. Busacca, A. Di Martino, and M. Marcacci. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am. J. Sports Med. 39:1180–1190, 2011.

    Article  PubMed  Google Scholar 

  56. Kubo, S., G. M. Cooper, T. Matsumoto, J. A. Phillippi, K. A. Corsi, A. Usas, L. Guangheng, F. H. Fu, and J. Huard. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum. 60:155–165, 2009.

    Article  PubMed  CAS  Google Scholar 

  57. Langer, R., and J. P. Vacanti. Tissue engineering. Science 260:920–926, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Langsjo, T. K., M. Hyttinen, A. Pelttari, K. Kiraly, J. Arokoski, and H. J. Helminen. Electron microscopic stereological study of collagen fibrils in bovine articular cartilage: volume and surface densities are best obtained indirectly (from length densities and diameters) using isotropic uniform random sampling. J. Anat. 195(Pt 2):281–293, 1999.

    Article  PubMed  Google Scholar 

  59. Långsjö, T. K., M. Hyttinen, A. Pelttari, K. Kiraly, J. Arokoski, and H. J. Helminen. Electron microscopic stereological study of collagen fibrils in bovine articular cartilage: volume and surface densities are best obtained indirectly (from length densities and diameters) using isotropic uniform random sampling. J. Anat. 195:281–293, 1999.

    Article  PubMed  Google Scholar 

  60. Li, W. J., R. Tuli, C. Okafor, A. Derfoul, K. G. Danielson, D. J. Hall, and R. S. Tuan. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609, 2005.

    Article  PubMed  CAS  Google Scholar 

  61. Li, G., B. Zheng, L. B. Meszaros, J. B. Vella, A. Usas, T. Matsumoto, and J. Huard. Identification and characterization of chondrogenic progenitor cells in the fascia of postnatal skeletal muscle. J. Mol. Cell. Biol. 3:369–377, 2011.

    Article  PubMed  CAS  Google Scholar 

  62. Lim, J. Y. Topographic control of cell response to synthetic materials. Tissue Eng. Regen. Med. 6:365–370, 2009.

    Google Scholar 

  63. Lin, H. R., C. J. Kuo, C. Y. Yang, S. Y. Shaw, and Y. J. Wu. Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives. J. Biomed. Mater. Res. 63:271–279, 2002.

    Article  PubMed  CAS  Google Scholar 

  64. Linh, N. T., and B. T. Lee. Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application. J. Biomater. Appl., 2011.

  65. Lu, H. H., S. D. Subramony, M. K. Boushell, and X. Z. Zhang. Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann. Biomed. Eng. 38:2142–2154, 2010.

    Article  PubMed  Google Scholar 

  66. Lu, S. H., A. H. Yang, C. F. Wei, H. S. Chiang, and M. B. Chancellor. Multi-potent differentiation of human purified muscle-derived cells: potential for tissue regeneration. BJU Int. 105:1174–1180, 2010.

    Article  PubMed  CAS  Google Scholar 

  67. Ma, D. Y., L. L. Ren, Y. P. Liu, F. L. Chen, J. R. Zhang, Z. X. Xue, and T. Q. Mao. Engineering scaffold-free bone tissue using bone marrow stromal cell sheets. J. Orthop. Res. 28:697–702, 2010.

    PubMed  CAS  Google Scholar 

  68. Maeda, S., T. Fujitomo, T. Okabe, S. Wakitani, and M. Takagi. Shrinkage-free preparation of scaffold-free cartilage-like disk-shaped cell sheet using human bone marrow mesenchymal stem cells. J. Biosci. Bioeng. 111:489–492, 2011.

    Article  PubMed  CAS  Google Scholar 

  69. Majore, I., P. Moretti, F. Stahl, R. Hass, and C. Kasper. Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev. 7:17–31, 2011.

    Article  PubMed  Google Scholar 

  70. Martinez, E., A. Lagunas, C. A. Mills, S. Rodriguez-Segui, M. Estevez, S. Oberhansl, J. Comelles, and J. Samitier. Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedicine 4:65–82, 2009.

    Article  PubMed  CAS  Google Scholar 

  71. Matsumoto, T., G. M. Cooper, B. Gharaibeh, L. B. Meszaros, L. Guangheng, A. Usas, F. H. Fu, and J. Huard. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum. 60:1390–1405, 2009.

    Article  PubMed  Google Scholar 

  72. Matsumoto, T., G. M. Cooper, B. Gharaibeh, L. B. Meszaros, G. Li, A. Usas, F. H. Fu, and J. Huard. Blocking VEGF as a potential approach to improve cartilage healing after osteoarthritis. J. Musculoskelet. Neuronal Interact. 8:316–317, 2008.

    PubMed  CAS  Google Scholar 

  73. Mente, P. L., and J. L. Lewis. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J. Orthop. Res. 12:637–647, 1994.

    Article  PubMed  CAS  Google Scholar 

  74. Miller, E. D., K. Li, T. Kanade, L. E. Weiss, L. M. Walker, and P. G. Campbell. Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32:2775–2785, 2011.

    Article  PubMed  CAS  Google Scholar 

  75. Mondrinos, M. J., R. Dembzynski, L. Lu, V. K. C. Byrapogu, D. M. Wootton, P. I. Lelkes, and J. Zhou. Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408, 2006.

    Article  PubMed  CAS  Google Scholar 

  76. Mouthuy, P. A., H. Ye, J. Triffitt, G. Oommen, and Z. Cui. Physico-chemical characterization of functional electrospun scaffolds for bone and cartilage tissue engineering. Proc. Inst. Mech. Eng. Part H 224:1401–1414, 2010.

    Article  CAS  Google Scholar 

  77. Murdoch, A. D., L. M. Grady, M. P. Ablett, T. Katopodi, R. S. Meadows, and T. E. Hardingham. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of Scaffold-free cartilage. Stem Cells 25:2786–2796, 2007.

    Article  PubMed  CAS  Google Scholar 

  78. Nakamura, A., M. Akahane, H. Shigematsu, M. Tadokoro, Y. Morita, H. Ohgushi, Y. Dohi, T. Imamura, and Y. Tanaka. Cell sheet transplantation of cultured mesenchymal stem cells enhances bone formation in a rat nonunion model. Bone 46:418–424, 2010.

    Article  PubMed  CAS  Google Scholar 

  79. Nguyen, L. H., A. K. Kudva, N. S. Saxena, and K. Roy. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials 32:6946–6952, 2011.

    Article  PubMed  CAS  Google Scholar 

  80. Niyama, K., N. Ide, K. Onoue, T. Okabe, S. Wakitani, and M. Takagi. Construction of osteochondral-like tissue graft combining beta-tricalcium phosphate block and scaffold-free centrifuged chondrocyte cell sheet. J. Orthop. Sci. 16:613–621, 2011.

    Article  PubMed  CAS  Google Scholar 

  81. Ofek, G., C. M. Revell, J. C. Hu, D. D. Allison, K. J. Grande-Allen, and K. A. Athanasiou. Matrix development in self-assembly of articular cartilage. PLoS ONE 3:e2795, 2008.

    Article  PubMed  CAS  Google Scholar 

  82. Ogawa, R., and S. Mizuno. Cartilage regeneration using adipose-derived stem cells. Curr. Stem Cell Res. Ther. 5:129–132, 2010.

    Article  PubMed  CAS  Google Scholar 

  83. Oliveira, J. M., M. T. Rodrigues, S. S. Silva, P. B. Malafaya, M. E. Gomes, C. A. Viegas, I. R. Dias, J. T. Azevedo, J. F. Mano, and R. L. Reis. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137, 2006.

    Article  PubMed  CAS  Google Scholar 

  84. Ott, M. K., N. Ferraz, J. Carlsson, and J. Hong. Influence of nanoporesize on platelet adhesion and activation. J. Mater. Sci. Mater. Med. 19:3115–3121, 2008.

    Article  PubMed  CAS  Google Scholar 

  85. Ozkan, S., D. M. Kalyon, and X. Yu. Functionally graded beta-TCP/PCL nanocomposite scaffolds: in vitro evaluation with human fetal osteoblast cells for bone tissue engineering. J. Biomed. Mater. Res. Part A 92:1007–1018, 2010.

    Google Scholar 

  86. Park, K., J. Huang, F. Azar, R. L. Jin, B. H. Min, D. K. Han, and K. Hasty. Scaffold-free, engineered porcine cartilage construct for cartilage defect repair—in vitro and in vivo study. Artif. Organs 30:586–596, 2006.

    Article  PubMed  CAS  Google Scholar 

  87. Pham, Q. P., U. Sharma, and A. G. Mikos. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12:1197–1211, 2006.

    Article  PubMed  CAS  Google Scholar 

  88. Reddi, A. H., R. Gay, S. Gay, and E. J. Miller. Transitions in collagen types during matrix-induced cartilage, bone, and bone-marrow formation. Proc. Natl. Acad. Sci. USA 74:5589–5592, 1977.

    Article  PubMed  CAS  Google Scholar 

  89. Redler, I., V. C. Mow, M. L. Zimny, and J. Mansell. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin. Orthop. Relat. Res. 112:357–362, 1975.

    Article  PubMed  Google Scholar 

  90. Reignier, J., and M. A. Huneault. Preparation of interconnected poly(epsilon-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47:4703–4717, 2006.

    Article  CAS  Google Scholar 

  91. Responte, D. J., R. M. Natoli, and K. A. Athanasiou. Collagens of articular cartilage: structure, function, and importance in tissue engineering. Crit. Rev. Biomed. Eng. 35:363–411, 2007.

    Article  PubMed  Google Scholar 

  92. Rizzi, S. C., D. T. Heath, A. G. A. Coombes, N. Bock, M. Textor, and S. Downes. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. J. Biomed. Mater. Res. 55:475–486, 2001.

    Article  PubMed  CAS  Google Scholar 

  93. Robert, H. Chondral repair of the knee joint using mosaicplasty. Orthop. Traumatol. Surg. Res. 97:418–429, 2011.

    Article  PubMed  CAS  Google Scholar 

  94. Roberts, S. J., L. Geris, G. Kerckhofs, E. Desmet, J. Schrooten, and F. P. Luyten. The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32:4393–4405, 2011.

    Article  PubMed  CAS  Google Scholar 

  95. Ruckh, T. T., K. Kumar, M. J. Kipper, and K. C. Popat. Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds. Acta Biomater. 6:2949–2959, 2010.

    Article  PubMed  CAS  Google Scholar 

  96. Salgado, A. J., J. T. Oliveira, A. J. Pedro, and R. L. Reis. Adult stem cells in bone and cartilage tissue engineering. Curr. Stem Cell Res. Ther. 1:345–364, 2006.

    PubMed  CAS  Google Scholar 

  97. Schantz, J. T., A. Brandwood, D. W. Hutmacher, H. L. Khor, and K. Bittner. Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin–polymer–ceramic scaffolds manufactured by fused deposition modeling. J. Mater. Sci. Mater. Med. 16:807–819, 2005.

    Article  PubMed  CAS  Google Scholar 

  98. Schinagl, R. M., D. Gurskis, A. C. Chen, and R. L. Sah. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15:499–506, 1997.

    Article  PubMed  CAS  Google Scholar 

  99. Scotti, C., D. Wirz, F. Wolf, D. J. Schaefer, V. Burgin, A. U. Daniels, V. Valderrabano, C. Candrian, M. Jakob, I. Martin, and A. Barbero. Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials 31:2252–2259, 2010.

    Article  PubMed  CAS  Google Scholar 

  100. Shetty, P., K. Cooper, and C. Viswanathan. Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J. Transfus. Sci. 4:14–24, 2010.

    Article  PubMed  CAS  Google Scholar 

  101. Shuai, C., C. Gao, Y. Nie, H. Hu, Y. Zhou, and S. Peng. Structure and properties of nano-hydroxyapatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology 22:285703, 2011.

    Article  PubMed  CAS  Google Scholar 

  102. Streicher, R. M., M. Schmidt, and S. Fiorito. Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine 2:861–874, 2007.

    Article  PubMed  CAS  Google Scholar 

  103. Tavazoie, S. F., C. Alarcon, T. Oskarsson, D. Padua, Q. Wang, P. D. Bos, W. L. Gerald, and J. Massague. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152, 2008.

    Article  PubMed  CAS  Google Scholar 

  104. Tellis, B. C., J. A. Szivek, C. L. Bliss, D. S. Margolis, R. K. Vaidyanathan, and P. Calvert. Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng. C 28:171–178, 2009.

    Article  CAS  Google Scholar 

  105. Temenoff, J. S., and A. G. Mikos. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440, 2000.

    Article  PubMed  CAS  Google Scholar 

  106. Temenoff, J. S., and P. J. Yang. Engineering orthopedic tissue interfaces. Tissue Eng. Part B 15:127–141, 2009.

    Google Scholar 

  107. Vaquette, C., C. Frochot, R. Rahouadj, and X. Wang. An innovative method to obtain porous PLLA scaffolds with highly spherical and interconnected pores. J. Biomed. Mater. Res. Part B 86:9–17, 2008.

    Google Scholar 

  108. Walboomers, X. F., L. Prodanov, J. te Riet, E. Lamers, M. Domanski, R. Luttge, J. J. W. A. van Loon, and J. A. Jansen. The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. Biomaterials 31:7758–7765, 2010.

    Article  PubMed  CAS  Google Scholar 

  109. Wang, W., B. Li, J. Yang, L. Xin, Y. Li, H. Yin, Y. Qi, Y. Jiang, H. Ouyang, and C. Gao. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31:8964–8973, 2010.

    Article  PubMed  CAS  Google Scholar 

  110. Wang, X., E. Wenk, X. Zhang, L. Meinel, G. Vunjak-Novakovic, and D. L. Kaplan. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Controlled Release 134:81–90, 2009.

    Article  CAS  Google Scholar 

  111. Watanabe, H., and K. Kimata. The roles of proteoglycans for cartilage. Clin. Calcium 16:1029–1033, 2006.

    PubMed  CAS  Google Scholar 

  112. Wei, Y., X. Sun, W. Wang, and Y. Hu. Adipose-derived stem cells and chondrogenesis. Cytotherapy 9:712–716, 2007.

    Article  PubMed  CAS  Google Scholar 

  113. Weiss, C., L. Rosenberg, and A. J. Helfet. An ultrastructural study of normal young adult human articular cartilage. J. Bone Joint Surg. Am. 50:663–674, 1968.

    PubMed  CAS  Google Scholar 

  114. Wu, X., S. Wang, B. Chen, and X. An. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res. 340:549–567, 2010.

    Article  PubMed  Google Scholar 

  115. Xu, T., J. Rohozinski, W. Zhao, E. C. Moorefield, A. Atala, and J. J. Yoo. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng. Part A 15:95–101, 2009.

    Article  PubMed  CAS  Google Scholar 

  116. Zhang, L., Y. Chen, J. Rodriguez, H. Fenniri, and T. J. Webster. Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int. J. Nanomed. 3:323–333, 2008.

    CAS  Google Scholar 

  117. Zhang, L., U. D. Hemraz, H. Fenniri, and T. J. Webster. Tuning cell adhesion on titanium with osteogenic rosette nanotubes. J. Biomed. Mater. Res. Part A 95:550–563, 2010.

    Article  CAS  Google Scholar 

  118. Zhang, L., J. Hu, and K. A. Athanasiou. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37:1–57, 2009.

    Article  PubMed  Google Scholar 

  119. Zhang, L., F. Rakotondradany, A. J. Myles, H. Fenniri, and T. J. Webster. Arginine–glycine–aspartic acid modified rosette nanotube–hydrogel composites for bone tissue engineering. Biomaterials 30:1309–1320, 2009.

    Article  PubMed  CAS  Google Scholar 

  120. Zhang, L., S. Ramsaywack, H. Fenniri, and T. J. Webster. Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds. Tissue Eng. Part A 14:1353–1364, 2008.

    Article  PubMed  CAS  Google Scholar 

  121. Zhang, L., J. Rodriguez, J. Raez, A. J. Myles, H. Fenniri, and T. J. Webster. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes. Nanotechnology 20:175101, 2009.

    Article  PubMed  CAS  Google Scholar 

  122. Zhang, L., S. Sirivisoot, G. Balasundaram, and T. J. Webster. Nanoengineering for bone tissue engineering. In: Micro and Nanoengineering of the Cell Microenvironment: Technologies and Applications, edited by A. Khademhosseini, J. Borenstein, M. Toner, and S. Takayama. Boston: Artech House, 2008, pp. 431–460.

    Google Scholar 

  123. Zhang, L., and T. J. Webster. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nanotoday 4:66–80, 2009.

    CAS  Google Scholar 

  124. Zhou, W. Y., S. H. Lee, M. Wang, W. L. Cheung, and W. Y. Ip. Selective laser sintering of porous tissue engineering scaffolds from poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J. Mater. Sci. Mater. Med. 19:2535–2540, 2008.

    Article  PubMed  CAS  Google Scholar 

  125. Zscharnack, M., P. Hepp, R. Richter, T. Aigner, R. Schulz, J. Somerson, C. Josten, A. Bader, and B. Marquass. Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model. Am. J. Sports Med. 38:1857–1869, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from the George Washington University Facilitating Fund (UFF) and Ralph E. Powe Junior Faculty Enhancement Award by the Oak Ridge Associated Universities (ORAU) organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijie Grace Zhang.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, N.J., Hacking, S.A. & Zhang, L.G. Recent Progress in Interfacial Tissue Engineering Approaches for Osteochondral Defects. Ann Biomed Eng 40, 1628–1640 (2012). https://doi.org/10.1007/s10439-012-0605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0605-5

Keywords

Navigation