Skip to main content
Log in

Assessing Manual Pursuit Tracking in Parkinson’s Disease Via Linear Dynamical Systems

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantitative assessment of motor performance is important for diseases of motor control, such as Parkinson’s disease (PD). Manual tracking tasks are well suited for motor assessment, as they can be performed concomitantly with brain mapping techniques. Here we propose utilizing second-order linear dynamical systems to assess manual pursuit tracking performance. With the desired trajectory as the input, and the subject’s actual motor response as the output, a linear model characterized by natural frequency and damping ratio is identified for each subject. We applied this method to 10 PD subjects (on and off l-dopa medication) and 10 normal subjects performing a multi-frequency sinusoidal tracking task. Model parameters were more sensitive than overall tracking errors in determining significant differences between groups. The effect of l-dopa medication was to reduce the damping ratio and make the range in natural frequency across individuals approach that of normal subjects. We interpret the changes in damping ratio and natural frequency as possibly related to suppression of compensatory cerebellar activity and/or improvement of motor program selection, and the changes in natural frequency as an implicit strategy to maintain settling time in the face of reduce damping ratio. Our results suggest that simple linear dynamical system models can be a powerful method to assess tracking performance in Parkinson’s disease because of the additional insight they can provide into neurological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abdel-Malek, A., C. Markham, P. Marmarelis, and V. Marmarelis. Quantifying deficiencies associated with Parkinson’s disease by use of time-series analysis. Electroencephalogr. Clin. Neurophysiol. 69(1):24, 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Abdel-Malek, A., and V. Z. Marmarelis. Modeling of task-dependent characteristics of human operator dynamics pursuit manual tracking. IEEE Trans. Syst. Man Cybern. 18(1):163–172, 1988.

    Article  Google Scholar 

  3. Allen, D. P., J. R. Playfer, N. M. Aly, P. Duffey, A. Heald, S. L. Smith, and D. M. Halliday. On the use of low-cost computer peripherals for the assessment of motor dysfunction in Parkinson’s disease—Quantification of bradykinesia using target tracking tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 15(2):286–294, 2007.

    Article  PubMed  CAS  Google Scholar 

  4. Aly, N., J. Playfer, S. Smith, and D. Halliday. A novel computer-based technique for the assessment of tremor in Parkinson’s disease. Age Ageing 36(4):395–399, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Au, W.-L., N. Lei, M. M. K. Oishi, and M. J. McKeown. L-dopa induces under-damped visually-guided motor responses in Parkinson’s disease. Exp. Brain Res. 202(3):553–559, 2010.

    Article  PubMed  CAS  Google Scholar 

  6. Bar-Gad, I., and H. Bergman. Stepping out of the box: Information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11(6):689–695, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10(4):433–436, 1997.

    Article  PubMed  CAS  Google Scholar 

  8. Brogan, W. Modern Control Theory (3rd ed.). Upper Saddle River, NJ: Prentice Hall, 1991.

    Google Scholar 

  9. Davidson, P., R. Jones, J. Andreae, and H. Sirisena. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach. IEEE Trans. Biomed. Eng. 49(11):1242–1252, 2002.

    Article  PubMed  Google Scholar 

  10. Day, B., J. Dick, and C. Marsden. Patients with Parkinson’s disease can employ a predictive motor strategy. J. Neurol. Neurosurg. Psychiatry 47(12):1299, 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Flowers, K. Some frequency response characteristics of Parkinsonism on pursuit tracking. Brain 101(1):19–34, 1978.

    Article  PubMed  CAS  Google Scholar 

  12. Franklin, G., M. Workman, and D. Powell. Digital Control of Dynamic Systems. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc, 1997.

    Google Scholar 

  13. Gonzalez, J., E. Heredia, T. Rahman, K. Barner, and G. Arce. Optimal digital filtering for tremor suppression. IEEE Trans. Biomed. Eng. 47(5):664–673, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Hoshi, E., L. Tremblay, J. Feger, P. L. Carras, and P. L. Strick. The cerebellum communicates with the basal ganglia. Nat. Neurosci. 8:1491–1493, 2005.

    Article  PubMed  CAS  Google Scholar 

  15. Hwang, E. J., M. A. Smith, and R. Shadmehr. Dissociable effects of the implicit and explicit memory systems on learning control of reaching. Exp. Brain Res. 173(3):425–437, 2006.

    Article  PubMed  Google Scholar 

  16. Johnson, M. T. V., A. N. Kipnis, J. D. Coltz, A. Gupta, P. Silverstein, F. Zwiebel, and T. Ebner. Effects of levodopa and viscosity on the velocity and accuracy of visually guided tracking in Parkinson’s disease. Brain 119(3):801–813, 1996.

    Article  PubMed  Google Scholar 

  17. Jones, R., M. Donaldson, and B. Sharman. A technique for removal of the visuoperceptual its application to Parkinson’s disease. IEEE Trans. Biomed. Eng. 43(10):1001, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Jueptner, J., M. Jueptner, I. H. Jenkins, D. J. Brooks, R. S. J. Frackowiak, and R. E. Passingham. The sensory guidance of movement: a comparison of the cerebellum and basal ganglia. Exp. Brain Res. 112(3):462–474, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. Kaji, R., R. Urushihara, N. Murase, H. Shimazu, and S. Goto. Abnormal sensory gating in basal ganglia disorders. J. Neurol. 252:13–16, 2005.

    Article  Google Scholar 

  20. Lemieux, S., M. Ghassemi, M. Jog, R. Edwards, and C. Duval. The influence of levodopa-induced dyskinesias on manual tracking in patients with Parkinson’s disease. Exp. Brain Res. 176(3):465–475, 2007.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, X., R. Osterbauer, T. Z. Aziz, R. C. Miall, and J. F. Stein. Increased response to visual feedback of drug-induced dyskinetic movements in advanced Parkinson’s disease. Neurosci. Lett. 304(1–2):25–28, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Ljung, L. System Identification Toolbox for Use with Matlab. Natick, MA: The Mathworks. Inc., 1997.

    Google Scholar 

  23. Ljung, L., and E. Ljung. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall, 1987.

    Google Scholar 

  24. Manto, M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J. Neuroeng. Rehabil. 6(1):10, 2009.

    Article  PubMed  Google Scholar 

  25. Mates, J., and T. Radil. Two-dimensional manual tracking of periodic movements: event and time interval analyses. Int. J. Psychophysiol. 12(2):123–132, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Miall, R., D. Weir, D. Wolpert, and J. Stein. Is the cerebellum a Smith predictor? J. Mot. Behav. 25(3):203–216, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Mink, J. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50(4):381–425, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Ohye, C., N. Tsukahara, and H. Narabayashi. Rigidity and disturbance of reciprocal innervation. Confin. Neurol. 26:24–40, 1965.

    Google Scholar 

  29. Palmer, S., L. Eigenraam, T. Hoque, R. McCaig, A. Troiano, and M. J. McKeown. Levodopa-sensitive, dynamic changes in effective connectivity during simultaneous movements in Parkinson’s disease. Neuroscience 158(2):693–704, 2009.

    Article  PubMed  CAS  Google Scholar 

  30. Palmer, S. J., J. Li, Z. J. Wang, and M. J. McKeown. Joint amplitude and connectivity compensatory mechanisms in Parkinson’s disease. Neuroscience 166(4):1110–1118, 2010.

    Article  PubMed  CAS  Google Scholar 

  31. Palmer, S., B. Ng, R. Abugharbieh, L. Eigenraam, and M. J. McKeown. Motor reserve and novel area recruitment: amplitude and spatial characteristics of compensation in Parkinson’s disease. Eur. J. Neurosci. 29:2187–2196, 2009.

    Article  PubMed  Google Scholar 

  32. Riviere, C., and N. Thakor. Modeling and canceling tremor in human-machine interfaces. IEEE Eng. Med. Biol. Mag. 15(3):29–36, 1996.

    Article  Google Scholar 

  33. Shadmehr, R., and H. H. Holcomb. Neural correlates of motor memory consolidation. Science 277(5327):821–825, 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Smith, M. A., A. Ghazizadeh, and R. Shadmehr. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 4(6):e179, 2006.

    Article  PubMed  Google Scholar 

  35. Sugi, T., M. Nakamura, J. Ide, and H. Shibasaki. Modeling of motor control on manual tracking for developing a handmovement-compensation technique. Artif. Life Robotics 7(3):112–117, 2003.

    Article  Google Scholar 

  36. van Donkelaar, P., J. F. Stein, R. E. Passingham, and R. C. Miall. Temporary inactivation in the primate motor thalamus during visually triggered and internally generated limb movements. J. Neurophysiol. 83(5):2780–2790, 2000.

    PubMed  Google Scholar 

  37. Verdaasdonk, B., H. Koopman, and F. van der Helm. Resonance tuning in a neuro-musculo-skeletal model of the forearm. Biol. Cybern. 96(2):165–180, 2007.

    Article  PubMed  CAS  Google Scholar 

  38. Watson, R., R. Jones, and N. Sharman. Two-dimensional tracking tasks for quantification of sensory-motor dysfunction and their application to Parkinson’s disease. Med. Biol. Eng. Comput. 35(2):141–145, 1997.

    Article  PubMed  CAS  Google Scholar 

  39. Wenzelburger, R., B.-R. Zhang, S. Pohel, S. Klebe, D. Lorenz, J. Herzog, H. Wilms, G. Duschl, and P. Krack. Force overflow and levadopa-induced dyskinesias in Parkinson’s disease. Brain 125:871–879, 2002.

    Article  PubMed  Google Scholar 

  40. Yu, H., D. Sternad, D. M. Corcos, and D. E. Vaillancourt. Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35(1):222–233, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Samantha Palmer for assistance in collecting the data. This work was supported in part by a Michael Smith Foundation for Health Research Team Startup Grant (McKeown), by NSERC Discovery Grant #327387 (Oishi), and by an NSERC USRA (TalebiFard).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meeko M. K. Oishi.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oishi, M.M.K., TalebiFard, P. & McKeown, M.J. Assessing Manual Pursuit Tracking in Parkinson’s Disease Via Linear Dynamical Systems. Ann Biomed Eng 39, 2263–2273 (2011). https://doi.org/10.1007/s10439-011-0306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0306-5

Keywords

Navigation