Skip to main content
Log in

Application of Electrical Impedance Tomography for Continuous Monitoring of Retroperitoneal Bleeding After Blunt Trauma

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Retroperitoneal bleeding is commonly associated with blunt trauma to the abdomen. Current medical tools cannot be used for continuous monitoring of the bleeding. In the study, electrical impedance tomography (EIT) was applied to monitoring the retroperitoneal bleeding of an animal model. Six healthy swine were used. The process of retroperitoneal bleeding was simulated by the continuous injection of anticoagulated blood. For each subject, total blood of 200 mL or more was injected within different time periods ranging from tens of minutes to two hours. The bleeding was detected and monitored continuously by EIT system with 16 electrodes at a rate of one image per second. EIT images were reconstructed by dynamic back-projection algorithm. Mean resistivity value (MRV) of the bleeding region in EIT images was calculated and plotted over time. We found that impedance changes caused by the bleeding could be revealed by EIT images and MRV curves. MRV curve varied approximately linearly with the quantity of blood injected using regression analysis (R 2 = 0.90 to 0.99, p < 0.05). In total, 20 mL of blood volume changes could be identified by EIT. The progression of the retroperitoneal bleeding can be monitored by EIT in the proposed animal model. It suggests EIT is potential as a useful tool for continuous monitoring of retroperitoneal bleeding after blunt trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Adler, A., R. Amyot, R. Guardo, J. H. Bates, and Y. Berthiaume. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J. Appl. Physiol. 83(5):1762–1767, 1997.

    PubMed  CAS  Google Scholar 

  2. Barber, D. C. A review of image reconstruction techniques for electrical impedance tomography. Med. Phys. 16(2):162–169, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Bayford, R. H., K. G. Boone, Y. Hanquan, and D. S. Holder. Improvement of the positional accuracy of EIT images of the head using a Lagrange multiplier reconstruction algorithm with diametric excitation. Physiol. Meas. 17:A49–A57, 1996.

    Article  PubMed  Google Scholar 

  4. Bikker, I. G., S. Leonhardt, J. Bakker, and D. Gommers. Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels. Intensive Care Med. Published online: Jun 10, 2009.

  5. Boverman, G., T. Kao, R. Kulkarni, B. S. Kim, D. Isaacson, G. J. Saulnier, and J. C. Newell. Robust linearized image reconstruction for multifrequency EIT of the breast. IEEE Trans. Med. Imaging 27(10):1439–1448, 2008.

    Article  PubMed  Google Scholar 

  6. Catalano, O., B. Cusati, A. Nunziata, and A. Siani. Active abdominal bleeding: contrast-enhanced sonography. Abdom. Imaging 31(1):9–16, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Franklin, G. A., and S. R. Casós. Current advances in the surgical approach to abdominal trauma. Injury 37(12):1143–1156, 2006.

    Article  PubMed  Google Scholar 

  8. Frerichs, I., T. Dudykevych, J. Hinz, M. Bodenstein, G. Hahn, and G. Hellige. Gravity effects on regional lung ventilation determined by functional EIT during parabolic flights. J. Appl. Physiol. 91(1):39–50, 2001.

    PubMed  CAS  Google Scholar 

  9. Frerichs, I., G. Hahn, and G. Hellige. Thoracic electrical impedance tomographic measurements during volume controlled ventilation—effects of tidal volume and positive end-expiratory pressure. IEEE Trans. Med. Imaging 18(9):764–773, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Frerichs, I., G. Schmitz, S. Pulletz, D. Schädler, G. Zick, J. Scholz, and N. Weiler. Reproducibility of regional lung ventilation distribution determined by electrical impedance tomography during mechanical ventilation. Physiol. Meas. 28:S261–S267, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Goharian, M., M. Soleimani, A. Jegatheesan, K. Chin, and G. R. Moran. A DSP based multi-frequency 3D electrical impedance tomography system. Ann. Biomed. Eng. 36(9):1594–1603, 2008.

    Article  PubMed  Google Scholar 

  12. Heinrich, S., H. Schiffmann, A. Frerichs, A. Klockgether-Radke, and I. Frerichs. Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study. Intensive Care Med. 32(9):1392–1398, 2006.

    Article  PubMed  Google Scholar 

  13. Holder, D. S., and O. Gilad. Impedance changes recorded with scalp electrodes during visual evoked responses: implications for Electrical Impedance Tomography of fast neural activity. Neuroimage 47(2):514–522, 2009.

    Article  PubMed  Google Scholar 

  14. Kennedy, J. H., J. C. Denniston, L. E. Baker, C. H. Brown 3rd, C. W. Lewis, and T. C. Poder. Evaluation of a microcrystalline bovine collagen hemostatic agent in canine solid viscera injury using abdominal impedance plethysmography. Biomater. Med. Devices Artif. Organs 3(4):451–463, 1975.

    PubMed  CAS  Google Scholar 

  15. Mangnall, Y. F., A. J. Baxter, R. Avill, N. C. Bird, B. H. Brown, D. C. Barber, A. D. Seagar, A. G. Johnson, and N. W. Read. Applied potential tomography: a new non-invasive technique for assessing gastric function. Clin. Phys. Physiol. Meas. 8(Suppl A):119–129, 1987.

    Article  PubMed  Google Scholar 

  16. Marco, G. G., S. Diego, A. Giulio, and S. Luca. Screening US and CT for blunt abdominal trauma: a retrospective study. Eur. J. Radiol. 56(1):97–101, 2005.

    Article  PubMed  Google Scholar 

  17. Pulletz, S., H. R. van Genderingen, G. Schmitz, G. Zick, D. Schädler, J. Scholz, N. Weiler, and I. Frerichs. Comparison of different methods to define regions of interest for evaluation of regional lung ventilation by EIT. Physiol. Meas. 27:S115–S127, 2006.

    Article  PubMed  Google Scholar 

  18. Sadleir, R. J., and A. Argibay. Modeling skull electrical properties. Ann. Biomed. Eng. 35(10):1699–1712, 2007.

    Article  PubMed  CAS  Google Scholar 

  19. Sadleir, R. J., and R. A. Fox. Detection and quantification of intraperitoneal fluid using electrical impedance tomography. IEEE Trans. Biomed. Eng. 48(4):484–491, 2001.

    Article  PubMed  CAS  Google Scholar 

  20. Sadleir, R. J., and T. Tang. Electrode configurations for detection of intraventricular haemorrhage in the premature neonate. Physiol. Meas. 30(1):63–79, 2009.

    Article  PubMed  CAS  Google Scholar 

  21. Salimi, J., K. Bakhtavar, M. Solimani, P. Khashayar, A. P. Meysamie, and M. Zargar. Diagnostic accuracy of CT scan in abdominal blunt trauma. Chin. J. Traumatol. 12(2):67–70, 2009.

    PubMed  Google Scholar 

  22. Shuai, W. J., F. S. You, W. Zhang, H. Y. Zhang, F. Fu, X. T. Shi, R. G. Liu, C. H. Xu, X. Z. Dong, and T. Y. Bao. Image monitoring for an intraperitoneal bleeding model of pigs using electrical impedance tomography. Physiol. Meas. 29:217–225, 2008.

    Article  Google Scholar 

  23. Soleimani, M. Computational aspects of low frequency electrical and electromagnetic tomography: a review study. Int. J. Numer. Anal. Model. 5(3):407–440, 2008.

    Google Scholar 

  24. Soulsby, C. T., M. Khela, E. Yazaki, D. F. Evans, E. Hennessy, and J. Powell-Tuck. Measurements of gastric emptying during continuous nasogastric infusion of liquid feed: electrical impedance tomography versus gamma scintigraphy. Clin. Nutr. 25(4):671–680, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Project of National Key Technology R&D Program of China under grant No. 2006BAI03A14 and by the Key Project of Natural Science Foundation of China under grant No. 50337020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhen Dong.

Additional information

Wanjun Shuai and Fusheng You contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuai, W., You, F., Zhang, H. et al. Application of Electrical Impedance Tomography for Continuous Monitoring of Retroperitoneal Bleeding After Blunt Trauma. Ann Biomed Eng 37, 2373–2379 (2009). https://doi.org/10.1007/s10439-009-9778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9778-y

Keywords

Navigation