Skip to main content
Log in

In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The effect of stent design on wall shear stress (WSS) and oscillatory shear index (OSI) was studied in vitro using time-resolved digital particle image velocimetry (DPIV). Four drug-eluting stents [XIENCE V® (Abbott Vascular), TAXUS® Liberté® (Boston Scientific), Endeavor® (Medtronic), and Cypher® (J&J Cordis)] and a bare-metal stent [VISION® (Abbott Vascular)] were implanted into compliant vessel models, and the flow was measured in physiologically accurate coronary conditions featuring reversal and realistic offsets between pressure and flowrate. DPIV measurements were made at three locations under two different flow rates (resting: Re = 160, f = 70 bpm and exercise: Re = 300, f = 120 bpm). It was observed that design substantially affected the WSS experienced at the vessel walls. Averaged values between struts ranged from 2.05 dynes/cm2 (Cypher®) to 8.52 dynes/cm2 (XIENCE V®) in resting conditions, and from 3.72 dynes/cm2 (Cypher®) to 14.66 dynes/cm2 (VISION®) for the exercise state. Within the stent, the WSS dropped and the OSI increased immediately distal to each strut. In addition, an inverse correlation between average WSS and OSI existed. Comparisons with recently published results from animal studies show strong correlation between the measured WSS and observed endothelial cell coverage. These results suggest the importance of stent design on the WSS experienced by endothelial cells in coronary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abiven, C., and P. P. Vlachos. Super spatio-temporal resolution, digital PIV system for multi-phase flows with phase differentiation and simultaneous shape and size quantification. In: 2002 Proceedings of the ASME IMECE. New Orleans, LA: ASME, 2002.

  2. Adrian, R.J. Twenty years of particle image velocimetry. Experiments in Fluids. 39:159-169, 2005.

    Article  Google Scholar 

  3. Al Suwaidi, J., P.B. Berger, C.S. Rihal, K.N. Garratt, M.R. Bell, H.H. Ting, J.F. Bresnahan, D.E. Grill, and D.R. Holmes. Immediate and long-term outcome of intracoronary stent implantation for true bifurcation lesions. Journal of the American College of Cardiology. 35:929-936, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stented arteries. Journal of Biomechanics. 41:1053-1061, 2008.

    Article  PubMed  Google Scholar 

  5. Benard, N., D. Coisne, E. Donal, and R. Perrault. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress. Journal of Biomechanics. 36:991-998, 2003.

    Article  PubMed  Google Scholar 

  6. Berry, J.L., J.E. Moore, V.S. Newman, and W.D. Routh. In vitro flow visualization in stented arterial segments. Journal of Vascular Investigation. 3:63-68, 1997.

    Google Scholar 

  7. Berry, J., A. Santamarina, J. Moore, S. Roychowdhury, and W. Routh. Experimental and Computational Flow Evaluation of Coronary Stents. Annals of Biomedical Engineering. 28:386-398, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Charonko, J.J., S.A. Ragab, and P.P. Vlachos. A scaling parameter for predicting pressure wave reflection in stented arteries. Journal of Medical Devices. 3:11006-011006-10, 2009.

    Google Scholar 

  9. Chiu, J., L. Chen, C. Chen, P. Lee, and C. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. Journal of Biomechanics. 37:531-539, 2004.

    Article  PubMed  Google Scholar 

  10. Duraiswamy, N., R.T. Schoephoerster, M.R. Moreno, and James E. Moore Jr. Stented Artery Flow Patterns and Their Effects on the Artery Wall. Annual Review of Fluid Mechanics. 39:357-382, 2006.

    Article  Google Scholar 

  11. Edelman, E.R., and C. Rogers. Pathobiologic Responses to Stenting. The American Journal of Cardiology. 81:4E-6E, 1998.

    Article  PubMed  CAS  Google Scholar 

  12. Edelman, E.R., and C. Rogers. Stent-Versus-Stent Equivalency Trials : Are Some Stents More Equal Than Others? Circulation. 100:896-898, 1999.

    PubMed  CAS  Google Scholar 

  13. El-Omar, M., G. Dangas, I. Iakovou, and R. Mehran. Update on In-stent Restenosis. Current Interventional Cardiology Reports. 3:296-305, 2001.

    PubMed  Google Scholar 

  14. Finn, A.V., M. Joner, G. Nakazawa, F. Kolodgie, J. Newell, M.C. John, H.K. Gold, and R. Virmani. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 115:2435-2441, 2007.

    Article  PubMed  Google Scholar 

  15. Fischman, D.L., M.B. Leon, D.S. Baim, R.A. Schatz, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. The New England Journal of Medicine. 331:496-501, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Hopkins, R. Lehman drug-eluting stent survey results. Medical Supplies and Devices Industry Update. Lehman Brothers Equity Research, 2003.

  17. Johnston, B.M., P.R. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Journal of Biomechanics. 37:709-720, 2004.

    Article  PubMed  Google Scholar 

  18. Johnston, B.M., P.R. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: Transient simulations. Journal of Biomechanics. 39:1116-1128, 2006.

    Article  PubMed  Google Scholar 

  19. Joner, M., G. Nakazawa, A.V. Finn, S.C. Quee, et al. Endothelial Cell Recovery Between Comparator Polymer-Based Drug-Eluting Stents. Journal of the American College of Cardiology. 52:333-342, 2008.

    Article  PubMed  CAS  Google Scholar 

  20. Karri, S., J. Charonko, and P. P. Vlachos. Robust wall gradient estimation using radial basis functions and proper orthogonal decomposition (POD) for particle image velocimetry (PIV) measured fields. Meas. Sci. Technol. 20:045401, 2009.

    Google Scholar 

  21. Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, et al. Intracoronary Stenting and Angiographic Results : Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO) Trial. Circulation. 103:2816-2821, 2001.

    PubMed  CAS  Google Scholar 

  22. Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, et al. Restenosis after coronary placement of various stent types. The American Journal of Cardiology. 87:34-39, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Kleinstreuer, C., S. Hyun, J.R. Buchanan, P.W. Longest, J.P. Archie, and G.A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Critical Reviews in Biomedical Engineering. 29:1-64, 2001.

    PubMed  CAS  Google Scholar 

  24. LaDisa, J.F., I. Guler, L.E. Olson, D.A. Hettrick, J.R. Kersten, D.C. Warltier, and P.S. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Annals of Biomedical Engineering. 31:972-980, 2003.

    Article  PubMed  Google Scholar 

  25. LaDisa, J.F., L.E. Olson, I. Guler, D.A. Hettrick, S.H. Audi, J.R. Kersten, D.C. Warltier, and P.S. Pagel. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. Journal of Applied Physiology. 97:424-430, 2004.

    Article  PubMed  Google Scholar 

  26. LaDisa, J.F., L.E. Olson, I. Guler, D.A. Hettrick, J.R. Kersten, D.C. Warltier, and P.S. Pagel. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. Journal of Applied Physiology. 98:947-957, 2005.

    Google Scholar 

  27. Lee, S. W., L. Antiga, and D. A. Steinman. Correlation among hemodynamic parameters at the carotid bifurcation. In: Proceedings of the 2008 Summer Bioengineering Conference. Marco Island, FL: ASME, 2008.

  28. Lewis, G. Materials, fluid dynamics, and solid mechanics aspects of coronary artery stents: a state-of-the-art review. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. 86B:569-590, 2008.

    Article  PubMed  CAS  Google Scholar 

  29. Malek, A.M., S.L. Alper, and S. Izumo. Hemodynamic Shear Stress and Its Role in Atherosclerosis. JAMA. 282:2035-2042, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Nakazawa, G., A.V. Finn, M.C. John, F.D. Kolodgie, and R. Virmani. The Significance of Preclinical Evaluation of Sirolimus-, Paclitaxel-, and Zotarolimus-Eluting Stents. The American Journal of Cardiology. 100:S36-S44, 2007.

    Article  Google Scholar 

  31. Nakazawa, G., A.V. Finn, and R. Virmani. Drug-eluting stent pathology–should we still be cautious? Nature Clinical Practice. Cardiovascular Medicine. 5:1, 2008.

    Article  PubMed  Google Scholar 

  32. Natarajan, S., and M.R. Mokhtarzadeh-Dehghan. A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries. Medical Engineering & Physics. 22:555-566, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. Orlic, D., E. Bonizzoni, G. Stankovic, F. Airoldi, et al. Treatment of multivessel coronary artery disease with sirolimus-eluting stent implantation: immediate and mid-term results. Journal of the American College of Cardiology. 43:1154-1160, 2004.

    Article  PubMed  CAS  Google Scholar 

  34. Ozolanta, I., G. Tetere, B. Purinya, and V. Kasyanov. Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex. Medical Engineering & Physics. 20:523-533, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Pahakis, M.Y., J.R. Kosky, R.O. Dull, and J.M. Tarbell. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochemical and Biophysical Research Communications. 355:228-233, 2007.

    Article  PubMed  CAS  Google Scholar 

  36. Pfisterer, M., H.P. Brunner-La Rocca, P.T. Buser, P. Rickenbacher, et al. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. Journal of the American College of Cardiology. 48:2584-2591, 2006.

    Article  PubMed  CAS  Google Scholar 

  37. Qiu, Y., and J.M. Tarbell. Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery. Journal of Biomechanical Engineering. 122:77-85, 2000.

    Article  PubMed  CAS  Google Scholar 

  38. Rosamond, W., K. Flegal, G. Friday, K. Furie, et al. Heart Disease and Stroke Statistics–2007 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 115:e69-171, 2007.

    Article  PubMed  Google Scholar 

  39. Simon, C., J.C. Palmaz, and E.A. Sprague. Influence of topography on endothelialization of stents: clues for new designs. Journal of Long-Term Effects of Medical Implants. 10:143-151, 2000.

    PubMed  CAS  Google Scholar 

  40. Stone, P.H., A.U. Coskun, S. Kinlay, M.E. Clark, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation. 108:438-444, 2003.

    Article  PubMed  Google Scholar 

  41. Stone, P.H., A.U. Coskun, S. Kinlay, J.J. Popma, et al. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J. 28:705-710, 2007.

    Article  PubMed  Google Scholar 

  42. Topol, E.J. Coronary-artery stents–gauging, gorging, and gouging. The New England Journal of Medicine. 339:1702-1704, 1998.

    Article  PubMed  CAS  Google Scholar 

  43. Topol, E.J., and P.W. Serruys. Frontiers in Interventional Cardiology. Circulation. 98:1802-1820, 1998.

    PubMed  CAS  Google Scholar 

  44. Tortoriello, A., and G. Pedrizzetti. Flow-tissue interaction with compliance mismatch in a model stented artery. Journal of Biomechanics. 37:1-11, 2004.

    Article  PubMed  Google Scholar 

  45. Wentzel, J.J., F.J.H. Gijsen, N. Stergiopulos, P.W. Serruys, C.J. Slager, and R. Krams. Shear stress, vascular remodeling and neointimal formation. Journal of Biomechanics. 36:681-688, 2003.

    Article  PubMed  Google Scholar 

  46. Wereley, S.T., and C.D. Meinhart. Second-order accurate particle image velocimetry. Experiments in Fluids. 31:258-268, 2001.

    Article  Google Scholar 

  47. Yao, Y., A. Rabodzey, and C.F. Dewey. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol. 293:H1023-1030, 2007.

    Article  PubMed  CAS  Google Scholar 

  48. Yazdani, S.K., J. Moore, J.L. Berry, and P.P. Vlachos. DPIV Measurements of Flow Disturbances in Stented Artery Models: Adverse affects of Compliance Mismatch. Journal of Biomechanical Engineering. 126:559-566, 2004.

    Article  PubMed  Google Scholar 

  49. Zhou, J., R.J. Adrian, S. Balachandar, and T.M. Kendall. Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow. Journal of Fluid Mechanics. 387:353-396, 1999.

    Article  Google Scholar 

Download references

Acknowledgments

Abbott Vascular provided partial support for this research. This material is also based upon work supported by the National Science Foundation under CAREER award #0547434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos Vlachos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charonko, J., Karri, S., Schmieg, J. et al. In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress. Ann Biomed Eng 37, 1310–1321 (2009). https://doi.org/10.1007/s10439-009-9697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9697-y

Keywords

Navigation