Skip to main content
Log in

Experimental Studies and Numerical Analysis of the Inflation and Interaction of Vascular Balloon Catheter-Stent Systems

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Balloon angioplasty with stenting is a well-established interventional procedure to treat stenotic arteries. Despite recent advances such as drug eluting stents, clinical studies suggest that stent design is linked to vascular injury. Additionally, dilation of the medical devices may trigger pathological responses such as growth and migration of vascular smooth cells, and may be a potent stimulus for neointimal hyperplasia. The purpose of this study is to experimentally investigate the mechanical characteristics of the transient expansion of six commercially available balloon-expandable stent systems, and to develop a robust finite element model based on the obtained experimental results. To reproduce the inflation of stent systems as in clinical practice, a pneumatic–hydraulic experimental setup is built, able to record loads and deformations. Characteristic pressure–diameter diagrams for the balloon-expandable stents and the detached balloons are experimentally obtained. Additionally, typical measures such as the burst opening pressure, the maximum dog-boning and foreshortening, and the elastic recoil are determined. The adopted constitutive models account for elastoplastic deformation of the stent, and for the nonlinear and anisotropic behavior of the balloon. The employed contact algorithm, based on a C 2-continuous surface parametrization, efficiently simulates the interaction of the balloon and stent. The computational model is able to successfully capture the experimentally observed deformation mechanisms. Overall, the numerical results are in satisfactory agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
Fig. 12

Similar content being viewed by others

References

  1. Allender, St., P. Scarborough, V. Peto, M. Rayner, J. Leal, R. Luengo-Fernandez, and A. Gray. European Cardiovascular Disease Statistics, 2008 Edition. British Heart Foundation Health Promotion Research Group and Health Economic Research Centre, Department of Public Health, University of Oxford, 2008. www.heartstats.org

  2. American Society for Metals International Handbook Committee. Metals Handbook. OH: ASM International, 1999.

  3. Auer M., Stollberger R., Regitnig P., Ebner F., Holzapfel G. A. (2008) A methodology to study the morphologic changes in lesions during in vitro angioplasty using MRI and image processing. Med. Image Anal. 12:163–173

    Article  PubMed  CAS  Google Scholar 

  4. Barragan P., Rieu R., Garitey V., Roquebert P. O., Sainsous J., Silvestri M., Bayet G. (2000) Elastic recoil of coronary stents: a comparative analysis. Catheter Cardiovasc. Interv. 50:112–119

    Article  PubMed  CAS  Google Scholar 

  5. Brauer H., Stolpmann J., Hallmann H., Erbel R., Fischer A. (1999) Measurement and numerical simulation of the dilatation behaviour of coronary stents. Mat.-wiss. u. Werkstofftechn. 30:876–885

    Article  CAS  Google Scholar 

  6. Carrozza J. P., Kuntz R. E., Levine M. J., Pomerantz R. M., Fishman R. F., Mansour M., Gibson C. M., Senerchia C. C., Diver D. J., Safian R. D. et al. (1992) Angiographic and clinical outcome of intracoronary stenting: immediate and long-term results from a large single-center experience. J. Am. Coll. Cardiol. 20:328–337

    Article  PubMed  Google Scholar 

  7. David Chua S. N., Mac Donald B. J., Hashmi M. S. J. (2003) Finite element simulation of stent and balloon interaction. J. Mat. Proc. Techn. 143–144:591–597

    Article  Google Scholar 

  8. Degertekin M., Regar E., Tanabe K., Smits P. C., van der Giessen W. J., Carlier S. G., de Feyter P., Vos J., Foley D. P., Ligthart J. M., Popma J. J., Serruys P. W. (2003) Sirolimus-eluting stent for treatment of complex in-stent restenosis: the first clinical experience. J. Am. Coll. Cardiol. 41:184–189

    Article  PubMed  CAS  Google Scholar 

  9. Debeule M., Mortier P., Van Impe R., Verhegghe B., Segers P., Verdonck P. (2007) Plasticity in the mechanical behaviour of cardiovascular stents during stent preparation (crimping) and placement (expansion). Key Eng. Mater. 340–341:847–852

    Article  Google Scholar 

  10. Debeule M., Van Impe R., Verhegghe B., Segers P., Verdonck P. (2006) Finite element analysis and stent design: Reduction of dogboning. Technol. Health Care 14:233–241

    PubMed  CAS  Google Scholar 

  11. Donnelly E. W., Bruzzi M. S., Connolley T., McHugh P. E. (2007) Finite element comparison of performance related characteristics of balloon expandable stents. Comput. Meth. Biomech. Biomed. Eng. 10:103–110

    Article  CAS  Google Scholar 

  12. Duda S. H., Wiskirchen J., Tepe G., Bitzer M., Kaulich T. W., Stoeckel D., Claussen C. D. (2000) Physical properties of endovascular stents: an experimental comparison. J. Vasc. Interv. Radiol. 11:645–654

    Article  PubMed  CAS  Google Scholar 

  13. Dumoulin C., Cochelin B. (2000) Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33:1461–1470

    Article  PubMed  CAS  Google Scholar 

  14. Edelman E. R., Rogers C. R. (1998) Pathobiologic responses to stenting. Am. J. Cardiol. 81:4E–6E

    Article  PubMed  CAS  Google Scholar 

  15. El-Abbasi N., Meguid S. A., Czekanski A. (2001) On the modelling of smooth contact surfaces using cubic splines. Int. J. Numer. Meth. Eng. 50:953–967

    Article  Google Scholar 

  16. Etave F., Finet G., Boivin M., Boyer J. C., Rioufol G., Thollet G. (2001) Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34:1065–75

    Article  PubMed  CAS  Google Scholar 

  17. Farb A., Sangiorgi G., Carter A. J., Walley V. M., Edwards W. D., Schwartz R. S., Virmani R. (1999) Pathology of acute and chronic coronary stenting in humans. Circulation 99:44–52

    PubMed  CAS  Google Scholar 

  18. Fattori R., Piva T. (2003) Drug-eluting stents in vascular intervention. Lancet 361:247–249

    Article  PubMed  Google Scholar 

  19. Hoffmann R., Mintz G. S., Dussaillant G. R., Popma J. J., Pichard A. D., Satler L. F., Kent K. M., Griffin J., Leon M. B. (1996) Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 94:1247–1254

    PubMed  CAS  Google Scholar 

  20. Hoffmann R., Mintz G. S., Mehran R., Kent K. M., Pichard A. D., Satler L. F., Leon M. B. (1999) Tissue proliferation within and surrounding Palmaz-Schatz stents is dependent on the aggressiveness of stent implanation technique. Am. J. Cardiol. 83:1170–1174

    Article  PubMed  CAS  Google Scholar 

  21. Hoher M., Wohrle J., Grebe O. C., Kochs M., Osterhues H. H., Hombach V., Buchwald A. B. (1999) A randomized trial of elective stenting after balloon recanalization of chronic total occlusions. J. Am. Coll. Cardiol. 34:722–729

    Article  PubMed  CAS  Google Scholar 

  22. Holzapfel G. A. (2000) Nonlinear Solid Mechanics. A Continuum Approach for Engineering. John Wiley & Sons, Chichester

    Google Scholar 

  23. Holzapfel G. A., Gasser T. C., Ogden R. W. (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48

    Article  Google Scholar 

  24. Holzapfel G. A., Stadler M., Gasser T. C. (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent design. J. Biomech. Eng. 127:166–180

    Article  PubMed  Google Scholar 

  25. Ibrahimbegović A., Al Mikdad M. (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int. J. Numer. Meth. Eng. 66:781–814

    Article  Google Scholar 

  26. Iijima R., Mehilli J., Schömig A., Kastrati A. (2006) Clinical evidence on polymer-based sirolimus and paclitaxel eluting stents. Minerva Cardioangiol. 54:539–555

    PubMed  CAS  Google Scholar 

  27. Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. Smooth contact strategies with emphasis on the modeling of balloon angioplasty with stenting. Int. J. Numer. Meth. Eng. 75:826–855, 2008

    Google Scholar 

  28. Kiousis D. E., Gasser T. C., Holzapfel G. A. (2007) A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35:1857–1869

    Article  PubMed  Google Scholar 

  29. König A., Schiele T. M., Rieber J., Theisen K., Mudra H., Klauss V. (2002) Influence of stent design and deployment technique on neointima formation and vascular remodeling. Z. Kardiol. 91:98–102

    Article  PubMed  Google Scholar 

  30. Kornowski R., Hong M. K., Tio F. O., Bramwell O., Wu H., Leon M. B. (1998) In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J. Am. Coll. Cardiol. 31:224–230

    Article  PubMed  CAS  Google Scholar 

  31. Lally C., Dolan F., Prendergast P. J. (2005) Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38:1574–1581

    Article  PubMed  CAS  Google Scholar 

  32. Liang D. K., Yang D. Z., Qi M., Wang W. Q. (2005) Finite element analysis of the implementation of a balloon expandable stent in a stenosed artery. Int. J. Cardiol. 104:314–318

    Article  PubMed  CAS  Google Scholar 

  33. McGarry J. P., O’Donnell B. P., McHugh P. E., McGarry J. G. (2004) Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comp. Mater. Sci. 31:421–438

    Google Scholar 

  34. McLean D. R., Eiger N. L. (2002) Stent design: implications for restenosis. Rev. Cardiovas. Med. 3:16–22

    Article  Google Scholar 

  35. Migliavacca F., Petrini L., Colombo M., Auricchio F., Pietrabissa R. (2002) Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35:803–811

    Article  PubMed  Google Scholar 

  36. Migliavacca F., Petrini L., Montanari V., Quagliana I., Auricchio F., Dubini G. (2005) A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 27:13–18

    Article  PubMed  Google Scholar 

  37. Morton A. C., Crossman D., Gunn J. (2004) The influence of physical stent parameters upon restenosis. Pathol. Biol. (Paris) 52:196–205

    Google Scholar 

  38. Moses J. W., Leon M. B., Popma J. J., Fitzgerald P. J., Holmes D. R., O’Shaughnessy C., Caputo R. P., Kereiakes D. J., Williams D. O., Teirstein P. S., Jaeger J. L., Kuntz R. E. (2003) SIRIUS Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323

    Article  PubMed  CAS  Google Scholar 

  39. Nikkari S. T., Clowes A. W. (1994) Restenosis after vascular reconstruction. Ann. Med. 26:95–100

    Article  PubMed  CAS  Google Scholar 

  40. Olbrich T., Murray A. (2001) Assessment of computer-controlled inflation/deflation for determining the properties of PTCA balloon catheters with pressure–volume curves. Physiol. Meas. 22:299–308

    Article  PubMed  CAS  Google Scholar 

  41. Ormiston J. A., Dixon S. R., Webster M. W., Ruygrok P. N., Stewart J. T., Minchington I., West T. (2000) Stent longitudinal flexibility: a comparison of 13 stent designs before and after balloon expansion. Catheter Cardiovasc. Interv. 50:120–124

    Article  PubMed  CAS  Google Scholar 

  42. Padmanabhan V., Laursen T. A. (2001) A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elem. Anal. Des. 37:173–198

    Article  Google Scholar 

  43. Piegel L. A., Tiller W. (1997) The NURBS Book 2nd edition. Springer-Verlag, New York

    Google Scholar 

  44. Rieu R., Barragan P., Masson C., Fuseri J., Garitey V., Silvestri M., Roquebert P., Sainsous J. (1999) Radial force of coronary stents: a comparative analysis. Catheter Cardiovasc. Interv. 46:380–391

    Article  PubMed  CAS  Google Scholar 

  45. Rogers C., Edelman E. R. (1995) Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001

    PubMed  CAS  Google Scholar 

  46. Rosamond, W., et al. Heart Disease and Stroke Statistics—2007 Update, Vol. 115. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, 2007

  47. Serruys P. W., de Jaegere P., Kiemeneij F., Macaya C., Rutsch W., Heyndrickx G., Emanuelsson H., Marco J., Legrand V., Materne P., Belardi J., Sijwart U., Colombo A., Goy J., van den Heuvel P., Delcan J., Morel M. (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N. Engl. J. Med. 331:489–495

    Article  PubMed  CAS  Google Scholar 

  48. Stadler M., Holzapfel G. A. (2004) Subdivision schemes for smooth contact surfaces of arbitrary mesh topology in 3D. Int. J. Numer. Meth. Eng. 60:1161–1195

    Article  Google Scholar 

  49. Stadler, M., G. A. Holzapfel, and J. Korelc. C n-continuous modeling of smooth contact surfaces using NURBS and applications to 2D problems. Int. J. Numer. Meth. Eng. 57:2177–2203, 2003

    Google Scholar 

  50. Stone G. W., Ellis S. G., Cox D. A., Hermiller J., O’Shaughnessy C., Mann J. T., Turco M., Caputo R., Bergin P., Greenberg J., Popma J. J., Russell M. E. (2004) TAXUS-IV Investigators. One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: the TAXUS-IV trial. Circulation 109:1942–1947

    Article  PubMed  CAS  Google Scholar 

  51. Sullivan T. M., Ainsworth S. D., Langan E. M., Taylor S., Snyder B., Cull D., Youkey J., Laberge M. (2002) Effect of endovascular stent strut geometry on vascular injury, myointimal hyperplasia, and restenosis. J. Vasc. Res. 36:143–149

    Google Scholar 

  52. Taylor, R. L. FEAP–A Finite Element Analysis Program, Version 7.5 User Manual. Berkeley, CA: University of California at Berkeley, 2005

  53. Wang W. Q., Liang D. K., Yang D. Z., Qi M. (2006) Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 39:21–32

    Article  PubMed  Google Scholar 

  54. Xia Z., Ju F., Sasaki K. (2007) A general finite element analysis method for balloon expandable stents based on repeated unit cell (RUC) model. Finite Elem. Anal. Des. 43:649–658

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Swedish subsidiaries of Boston Scientific, Cordis, and Medtronic for generously providing the vascular stent products investigated in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard A. Holzapfel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiousis, D.E., Wulff, A.R. & Holzapfel, G.A. Experimental Studies and Numerical Analysis of the Inflation and Interaction of Vascular Balloon Catheter-Stent Systems. Ann Biomed Eng 37, 315–330 (2009). https://doi.org/10.1007/s10439-008-9606-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9606-9

Keywords

Navigation