Skip to main content
Log in

A DSP Based Multi-Frequency 3D Electrical Impedance Tomography System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper describes the design of a multi-frequency Electrical impedance tomography (EIT) system, which provides a flexible mechanism for addressing up to 48 electrodes for imaging conductivity and permittivity distributions. A waveform generator based on a digital signal processor is used to produce sinusoidal waveforms with the ability to select frequencies in the range of 0.1–125 kHz. A software based phase-sensitive demodulation technique is used to extract amplitudes and phases from the raw measurements. Signal averaging and automatic gain control are also implemented in voltage and phase measurements. System performance was validated using a Cardiff-Cole Phantom and a saline filled cylindrical tank. The signal-to-noise ratio (SNR) using saline tank was greater than 60 dB and the maximum reciprocity error less than 4% for most frequencies. The common-mode rejection ratio (CMRR) was nearly 60 dB at 50 kHz. Image reconstruction performance was assessed using data acquired through a range of frequencies. This EIT system offers image reconstruction of both conductivity and permittivity distributions in three dimensions. The imaging results are presented in time difference and frequency difference imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Barber D. C., Brown B. H. 1984 Applied potential tomography. J. Phys. E Sci. Instrum. 17, 723–733 doi:10.1088/0022-3735/17/9/002

    Article  Google Scholar 

  2. Bertemes-Filho P., Brown B. H., Wilson A. J. 2000 A comparison of modified Howland circuits as current generators with current mirror type circuits. Physiol. Meas. 21, 1–6 doi:10.1088/0967-3334/21/1/301

    Article  PubMed  CAS  Google Scholar 

  3. Blad B. 1996 Clinical application of characteristic frequency measurements: preliminary in vivo study. Med. Biol. Eng. Comput. 34, 362–365 doi:10.1007/BF02520006

    Article  PubMed  CAS  Google Scholar 

  4. Blad B., Baldetorp B. 1996 Impedance spectra of tumor tissue in comparison with normal tissue: a possible clinical application for electrical impedance tomography. Physiol. Meas. 17, A105–A115 doi:10.1088/0967-3334/17/4A/015

    Article  PubMed  Google Scholar 

  5. Boone K. G., Holder D. S. 1996 Current approaches to analogue instrumentation design in electrical impedance tomography. Physiol. Meas. 17, 229–247 doi:10.1088/0967-3334/17/4/001

    Article  PubMed  CAS  Google Scholar 

  6. Brown B. H., Seagar A. D. 1987 The Sheffield data collection system. Clin. Phys. Physiol. Meas. 8(suppl A), 91–97 doi:10.1088/0143-0815/8/4A/012

    Article  PubMed  Google Scholar 

  7. Cole K. S. 1940 Permeability and impermeability of cell membranes for ions Symp. Quant. Biol. 8, 110–122

    CAS  Google Scholar 

  8. Cole K. S., Cole R. H. 1941 Dispersion and absorption in dielectrics. J. Chem. Phys. 9, 341–351 doi:10.1063/1.1750906

    Article  CAS  Google Scholar 

  9. Cook R. D., Saunier G. J., Gisser D. G., Goble J., Newel J. C., Isaacson D. 1994 ACT3: a high-speed, high-precision electrical impedance tomograph. IEEE Trans. Biomed. Eng. 41, 713–722 doi:10.1109/10.310086

    Article  PubMed  CAS  Google Scholar 

  10. Crile G. W., Hosmer H. R., Rowland A. F. 1992 The electrical conductivity of animal tissues under normal and pathological conditions. Am. J. Physiol. 60, 59–106 doi:10.1119/1.17044

    Article  Google Scholar 

  11. Foster K. R., Schwan H. P. 1989 Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17, 25–104

    PubMed  CAS  Google Scholar 

  12. Gabriel C., Gabriel S., Corthout E. 1996 The dielectric properties of biological tissues—I: literature survey. Phys. Med. Biol. 41, 2231–2249 doi:10.1088/0031-9155/41/11/001

    Article  PubMed  CAS  Google Scholar 

  13. Gabriel S., Lau R. W., Gabriel C. 1996 The dielectric properties of biological tissues—II: measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 doi:10.1088/0031-9155/41/11/002

    Article  PubMed  CAS  Google Scholar 

  14. Gang, Y., K. H. Lim, R. George, G. Ybarra, and W. T. Joines. A 3D EIT system for breast cancer imaging. IEEE Proceedings of the 3rd International Symposium on Biomedical Imaging. 2006

  15. Geselowitz D. B. 1971 An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng. 18, 38–41 doi:10.1109/TBME.1971.4502787

    Article  PubMed  CAS  Google Scholar 

  16. Goharian, M., M. J. Bruwer, A. Jegatheesan, G. R. Moran, and J. F. MacGregor. A novel approach for EIT regularization via spatial and spectral principal component analysis.Physiol. Meas. 28:1001–1016, 2007. doi:10.1088/0967-3334/28/9/003

    Article  PubMed  Google Scholar 

  17. Goharian, M., Jegatheesan, A., Moran, G. R., 2007. Dogleg trust-region application in electrical impedance tomography. Physiol. Meas. 28, 555–572 doi:10.1088/0967-3334/28/5/009

    Article  PubMed  Google Scholar 

  18. Goharian, M., G. R. Moran, K. Wilson, C. Seymour, A. Jegatheesan, M. Hill, R. T. Thompson, and G. Campbell. Modifying the MRI, elastic stiffness and electrical properties of polyvinyl alcohol cryogel using irradiation. Nucl. Instr. Meth. Phys. Res. B, 263(1):239–244, 2007. doi:10.1016/j.nimb.2007.04.111

    Article  CAS  Google Scholar 

  19. Griffiths H. 1995 A Cole phantom for EIT. Physiol. Meas. 16(suppl), A29–A38 doi:10.1088/0967-3334/16/3A/003

    Article  PubMed  CAS  Google Scholar 

  20. Griffiths, H., and J. Jossinet. Bioelectric tissue spectroscopy from multifrequency EIT. Physiol. Meas. 15(Suppl. 2A):29–35, 1994. doi:10.1088/0967-3334/15/2A/008

  21. Halter R., Hartov A., Paulsen K. D. 2004 Design and implementation of a high frequency electrical impedance tomography system. Physiol. Meas. 25, 379–390 doi:10.1088/0967-3334/25/1/041

    Article  PubMed  Google Scholar 

  22. Hartov A., Mazzarese R., Reiss F., Kerner T., Osterman S., Williams D., Paulsen K. A. 2000 A multi-channel continuously-selectable multi-frequency electrical impedance spectroscopy measurement system. IEEE Trans. Biomed. Eng. 47, 49–58 doi:10.1109/10.817619

    Article  PubMed  CAS  Google Scholar 

  23. Holder, D. S. Electrical Impedance Tomography: Methods, History and Application. UK: IOP Bristol, 2005

  24. Jennings D., Schneider I. D. 2001 Front-end architecture for a multi-frequency electrical impedance tomography system. Med. Biol. Eng. Comput. 39, 368–374 doi:10.1007/BF02345293

    Article  PubMed  CAS  Google Scholar 

  25. Lu, L. Aspects of an electrical impedance tomography spectroscopy (EITS) system. PhD Thesis, University of Sheffield, 1995

  26. McEwan M., Cusick G., Holder D. S., 2007, A review of errors in multi-frequency EIT instrumentation. Physiol. Meas., 28, S197–S215

    Article  PubMed  CAS  Google Scholar 

  27. McEwan A., Romsauerova A., Yerworth R., Horesh L., Bayford R., Holder D. 2006 Design and calibration of a compact multi-frequency EIT system for acute stroke imaging. Physiol. Meas. 27, S199–S210 doi:10.1088/0967-3334/27/5/S17

    Article  PubMed  CAS  Google Scholar 

  28. Oh T. I., Lee K. H., Kim S. M., Koo H., Woo E. J., Holder D., 2007, Calibration methods for a multi-channel multi-frequency EIT system. Physiol. Meas., 28, 1175–1188. doi:10.1088/0967-3334/28/10/004

    Article  PubMed  Google Scholar 

  29. Osterman K. S., Kerner T. E., Williams D. B., Hartov A., Poplack S. P., Paulsen K. D. 2000 Multifrequency electrical impedance imaging: preliminary in vivo experience in breast. Physiol. Meas. 21(1), 99–109 doi:10.1088/0967-3334/21/1/313

    Article  PubMed  CAS  Google Scholar 

  30. Pethig R., Kell D. B. 1987 The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 32, 933–970 doi:10.1088/0031-9155/32/8/001

    Article  PubMed  CAS  Google Scholar 

  31. Ristic, B., S. Kun, and R. Peura. Muscle tissue ischemia monitoring using impedance spectroscopy: quantitative results of animal studies. In: Proceedings of the IEEE Engineering in Medicine and Biology Society. 1997, pp. 2108–2111

  32. Riu P. J., Rosell J., Lozano A., Pallás-Areny R. 1995 Multi-frequency static imaging in electrical impedance tomography: part1 instrumentatiion requirement. Med. Biol. Eng. Comput. 33, 784–792 doi:10.1007/BF02523010

    Article  PubMed  CAS  Google Scholar 

  33. Rosell J., Riu P. 1992 Common-mode feedback in electrical impedance tomography. Clin. Phys. Phsiol. Meas. 13, A11–A14

    Article  Google Scholar 

  34. Schwan H. P. 1957 Electrical properties of tissue and cell suspensions Adv. Biol. Med. Phys. 5, 147–208

    PubMed  CAS  Google Scholar 

  35. Smith R. W. M., Fresston I. L., Brown B. H. 1995 A real-time electrical impedance tomography system for clinical use-design and preliminary results. IEEE Trans. Biomed. Eng. 42(2), 133–140 doi:10.1109/10.341825

    Article  PubMed  CAS  Google Scholar 

  36. Wang, M., Y. Ma, N. Holliday, Y. Dai, R. A. Williams, G. Lucas. A high-performance EIT system. Sens. J. IEEE, 2005, ieeexplore.ieee.org

  37. Wilson A. J., Milnes P., Waterworth A. R., Smallwood R. H., Brown B. H. 2001 Mk3.5: a modular, multi-frequency successor to the Mk3a EIS/EIT system. Physiol. Meas. 22, 49–54 doi:10.1088/0967-3334/22/1/307

    Article  PubMed  CAS  Google Scholar 

  38. Yerworth R. J., Bayford R. H., Brown B., Milnes P., Conway M., Holder D. S. 2003 Electrical impedance tomography spectroscopy (EITS) for human head imaging. Physiol. Meas. 24, 477–489 doi:10.1088/0967—3334/24/2/358

    Article  PubMed  CAS  Google Scholar 

  39. Yerworth R. J., Bayford R. H., Cusick G., Conway M., Holder D. S. 2002 Design and performance of the UCLH mark 1b 64 channel electrical impedance tomography (EIT) system, optimized for imaging brain function. Physiol. Meas. 23, 149–158 doi:10.1088/0967-3334/23/1/314

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuchehr Soleimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goharian, M., Soleimani, M., Jegatheesan, A. et al. A DSP Based Multi-Frequency 3D Electrical Impedance Tomography System. Ann Biomed Eng 36, 1594–1603 (2008). https://doi.org/10.1007/s10439-008-9537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9537-5

Keywords

Navigation