Skip to main content
Log in

The Effect of Regional Variations of the Trabecular Bone Properties on the Compressive Strength of Human Vertebral Bodies

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cancellous centrum is a major component of the vertebral body and significantly contributes to its structural strength and fracture risk. We hypothesized that the variability of cancellous bone properties in the centrum is associated with vertebral strength. Microcomputed tomography (micro-CT)-based gray level density (GLD), bone volume fraction (BV/TV), and finite element modulus (E) were examined for different regions of the trabecular centrum and correlated with vertebral body strength determined experimentally. Two sets of images in the cancellous centrum were digitally prepared from micro-CT images of eight human vertebral bodies (T10–L5). One set included a cubic volume (1 per vertebral centrum, n = 8) in which the largest amount of cancellous material from the centrum was included but all the shell materials were excluded. The other set included cylindrical volumes (6 per vertebral centrum, n = 48) from the anterior (4 regions: front, center, left, and right of the midline of vertebra) and the posterior (2 regions: left and right) regions of the centrum. Significant positive correlations of vertebral strength with GLD (r 2 = 0.57, p = 0.03) and E (r 2 = 0.63, p = 0.02) of the whole centrum and with GLD (r 2 = 0.65, p = 0.02), BV/TV (r 2 = 0.72, p = 0.01) and E (r 2 = 0.85, p = 0.001) of the central region of the vertebral centrum were found. Vertebral strength decreased with increasing coefficient of variation of GLD, BV/TV, and E calculated from subregions of the vertebral centrum. The values of GLD, BV/TV, and E in centrum were significantly smaller for the anterior region than for the posterior region. Overall, these findings supported the significant role of regional variability of centrum properties in determining the whole vertebral strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Banse X., Devogelaer J. P., Munting E., Delloye C., Cornu O., Grynpas M. Inhomogeneity of human vertebral cancellous bone: Systematic density and structure patterns inside the vertebral body. Bone 28(5):563–571, 2001

    Article  PubMed  CAS  Google Scholar 

  2. Buckley J. M., Leang D. C., Keaveny T. M. Sensitivity of vertebral compressive strength to endplate loading distribution. J. Biomech. Eng. 128(5):641–646, 2006

    Article  PubMed  Google Scholar 

  3. Buckley J. M., Loo K., Motherway J. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40(3):767–774, 2007

    Article  PubMed  Google Scholar 

  4. Cao K. D., Grimm M. J., Yang K.-H. Load sharing within a human lumber vertebral body using the finite element method. Spine 12:E253–E260, 2001

    Article  Google Scholar 

  5. Cendre E., Mitton D., Roux J. P., Arlot M. E., Duboeuf F., Burt-Pichat B., Rumelhart C., Peix G., Meunier P. J. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: Relationships with histomorphometry and biomechanics. Osteoporos. Int. 10(5):353–360, 1999

    Article  PubMed  CAS  Google Scholar 

  6. Cody D. D., Goldstein S. A., Flynn M. J., Brown E. B. Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load. Spine 16(2):146–154, 1991

    PubMed  CAS  Google Scholar 

  7. Cody D. D., Gross G. J., Hou F. J., Spencer H. J., Goldstein S. A., Fyhrie D. P. Femoral strength is better predicted by finite element models than QCT and DXA. J. Biomech. 32(10):1013–1020, 1999

    Article  PubMed  CAS  Google Scholar 

  8. Crawford R. P., Cann C. E., Keaveny T. M. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750, 2003

    Article  PubMed  Google Scholar 

  9. Cvijanovic O., Bobinac D., Zoricic S., Ostojic Z., Maric I., Crncevic-Orlic Z., Kristofic I., Ostojic L. Age- and region-dependent changes in human lumbar vertebral bone. Spine 29(21):2370–2375, 2005

    Article  Google Scholar 

  10. Fyhrie D. P., Hoshaw S. J., Hamid M. S., Hou F. J. Shear stress distribution in the trabeculae of human vertebral bone. Ann. Biomed. Eng. 28(10):1194–1199, 2000

    Article  PubMed  CAS  Google Scholar 

  11. Hou F. J., Lang S. M., Hoshaw S. J., Reimann D. A., Fyhrie D. P. Human vertebral body apparent and hard tissue stiffness. J. Biomech. 31:1009–1015, 1998

    Article  PubMed  CAS  Google Scholar 

  12. Jacobs, C. R., B. R. Davis, C. J. Rieger, J. J. Francis, M. Saad, and D. P. Fyhrie. NACOB presentation to ASB Young Scientist Award: Postdoctoral. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. North American Congress on Biomechanics. J. Biomech. 32(11):1159–1164, 1999

    Google Scholar 

  13. Kim D.-G., Christopherson G., Dong X. N., Fyhrie D. P., Yeni Y. N. The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone. Bone 35:1375–1382, 2004

    Article  PubMed  Google Scholar 

  14. Kim D.-G., Dong X. N., Cao T., Baker K. C., Shaffer R. R., Fyhrie D. P., Yeni Y. N. Evaluation of filler materials used for uniform load distribution at boundaries during structural biomechanical testing of whole vertebrae. J. Biomech. Eng. 128:161–165, 2006

    Article  PubMed  Google Scholar 

  15. Kim D.-G., Hunt C. A., Zauel R., Fyhrie D. P., Yeni Y. N. Prediction of human vertebral body strength using microcomputed tomography-based finite element models from cancellous centrum with and without the cortical shell. Trans. Ortho. Res. Soc. 30:1265, 2005

    Google Scholar 

  16. Kopperdahl D. L., Roberts A. D., Keaveny T. M. Localized damage in vertebral bone is most detrimental in regions of high strain energy density. J. Biomech. Eng. 121(6):622–628, 1999

    PubMed  CAS  Google Scholar 

  17. Kothari M., Keaveny T. M., Lin J. C., Newitt D. C., Majumdar S. Measurement of intraspecimen variations in vertebral cancellous bone architecture. Bone 25(2):245–250, 1999

    Article  PubMed  CAS  Google Scholar 

  18. Kuhn J. L., Goldstein S. A., Feldkamp L. A., Goulet R. W., Jesion G. Evaluation of a microcomputed tomography system to study trabecular bone structure. J. Ortho. Res. 8:833–842, 1990

    Article  CAS  Google Scholar 

  19. Ladd A. J., Kinney J. H., Haupt D. L., Goldstein S. A. Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J. Ortho. Res. 16(5):622–628, 1998

    Article  CAS  Google Scholar 

  20. Liebschner M. A., Kopperdahl D. L., Rosenberg W. S., Keaveny T. M. Finite element modeling of the human thoracolumbar spine. Spine 28(6):559–65, 2003

    Article  PubMed  Google Scholar 

  21. McCubbrey D. A., Cody D. D., Peterson E. L., Kuhn J. L., Flynn M. J., Goldstein S. A. Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J. Biomech. 28(8):891–899, 1995

    Article  PubMed  CAS  Google Scholar 

  22. Mitton D., Cendre E., Roux J.-P., Arlot M. E., Peix G., Rumelhart C., Babot D., Meunier P. J. Mechanical properties of ewe vertebral cancellous bone compared with histomorphometry and high-resolution computed tomography parameters. Bone 22(6):651–658, 1998

    Article  PubMed  CAS  Google Scholar 

  23. Old J. L., Calvert M. Vertebral compression fractures in the elderly. Am. Fam. Physician. 69:111–116, 2004

    PubMed  Google Scholar 

  24. Reimann D. A., Hames S. M., Flynn M. J., Fyhrie D. P. A cone beam computed tomography system for true 3D imaging of specimens. Appl. Radiat. Isot. 48(10–12):1433–1436, 1997

    Article  PubMed  CAS  Google Scholar 

  25. van Rietbergen B., Weinans H., Huiskes R., Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28(1):69–81, 1995

    Article  PubMed  Google Scholar 

  26. Ruegsegger P., Koller B., Mueller R. T. A microtomographic system for the nondestructive evaluation of bone architecture. Calc. Tiss. Int. 58:24–29, 1996

    Article  CAS  Google Scholar 

  27. Sankoh A., Huque M., Dubey S. Some comments on frequently used multiple endpoint adjustments methods in clinical trials. Stat. Med. 16:2529–2542, 1997

    Article  PubMed  CAS  Google Scholar 

  28. Silva M. J., Keaveny T. M., Hayes W. C. Load sharing between the shell and centrum in the lumbar vertebral body. Spine. 22(2):140–150, 1997

    Article  PubMed  CAS  Google Scholar 

  29. Simpson E. K., Parkinson I. H., Manthey B., Fazzalari N. L. Intervertebral disc disorganization is related to trabecular bone architecture in the lumbar spine. J. Bone. Min. Res. 16(4):681–687, 2001

    Article  CAS  Google Scholar 

  30. Ulrich D., van Rietbergen B., Weinans H., Ruegsegger P. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J. Biomech. 31:1187–1192, 1998

    Article  PubMed  CAS  Google Scholar 

  31. Un K., Bevill G., Keaveny T. M. The effects of side-artifacts on the elastic modulus of trabecular bone. J. Biomech. 39:1955–1963, 2006

    Article  PubMed  Google Scholar 

  32. Yeh O. C., Keaveny T. M. Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study. Bone 25(2):223–228, 1999

    Article  PubMed  CAS  Google Scholar 

  33. Yeni Y. N., Christopherson G., Dong X. N., Kim D.-G., Fyhrie D. P. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone. J. Biomech. Eng. 127(1):1–8, 2005

    Article  PubMed  Google Scholar 

  34. Yeni Y. N., Dong X. N., Cao T., Baker K. C., Schaffer R. R., Fryhrie D. P. Evaluation of filler materials used for uniform load distribution at boundaries during structural biomechanical testing of whole vertebrae. Trans. Ortho. Res. Soc. 29:1116, 2004

    Google Scholar 

  35. Yeni Y. N., Fyhrie D. P. Finite element predicted apparent stiffness is a consistent predictor of apparent strength in human cancellous bone tested with different boundary conditions. J. Biomech. 34(12):1649–1654, 2001

    Article  PubMed  CAS  Google Scholar 

  36. Yeni Y. N., Hou F. J., Vashishth D., Fyhrie D. P. Trabecular shear stress in human vertebral cancellous bone: intra- and inter-individual variations. J. Biomech. 34(10):1341–1346, 2001

    Article  PubMed  CAS  Google Scholar 

  37. Zauel R., Yeni Y. N., Christopherson G. T., Cody D. D., Fyhrie D. P. Segmentation algorithm for accurate 3D representation of microcomputed tomographic images of human vertebral bodies. Trans. Ortho. Res. Soc. 29:1018, 2004

    Google Scholar 

Download references

Acknowledgment

This publication was made possible by Grant Numbers AR049343 (YNY) and AR40776 (DPF) from the National Institutes of Health. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Gyoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DG., Hunt, C.A., Zauel, R. et al. The Effect of Regional Variations of the Trabecular Bone Properties on the Compressive Strength of Human Vertebral Bodies. Ann Biomed Eng 35, 1907–1913 (2007). https://doi.org/10.1007/s10439-007-9363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9363-1

Keywords

Navigation